Introduction to the C programming language
From C to C++: Stack and Queue

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant'’Anna — Pisa

February 24, 2010

http://retis.sssup.it/~lipari

Outline

e From struct to classes

9 First data structure: stack

9 Queue

Outline

e From struct to classes

Abstract data types

@ An important concept in programming is the Abstract Data
Type (ADT)
@ An abstract data type is a user-defined type, that can be
used similarly to built-in data types
@ An ADT defines
@ What kind of values the data type can assume (domain)
@ What operations we can perform on the data type
@ How the data and the operations are implemented is
hidden to the user, and it is part of the implementation

ADT inC

@ ADT are a general concept that can be supported in any
language, including Assembler, Basic, C

@ Example of ADT in C

struct point {
doubl e x, vy;
int z;

}s

voi d point_read(ifstream & n, point *p);
voi d poi nt_save(ofstream &ut, point *p);
voi d point_print(point *p);

@ The structure defines the domain (i.e. how the data is
composed by three components)
The three functions define the operations we can do on the
data

@ It is not very nice to program ADT in C, because there is
little support from the language. ADT are well supported in
Object Oriented (OO) languages

Example in C++

@ C++ is the OO version of C

@ It maintains a similar syntax, adding new keywords and
constructs

@ How the previous class can be expressed in C++?

class Point {
doubl e x, vy;
int z;
public:
Poi nt (doubl e x1, double y1);
Point ();
voi d read(ifstream & n);
voi d save(ofstream &out);
void print();
doubl e get _x();

Example in C++

@ C++ is the OO version of C

@ It maintains a similar syntax, adding new keywords and
constructs

@ How the previous class can be expressed in C++?

new keyword class instead of struct |

class Point {
doubl e x, vy;
int z;
public:
Poi nt (doubl e x1, double y1);
Point ();
voi d read(ifstream & n);
voi d save(ofstream &out);
void print();
doubl e get _x();

Example in C++

@ C++ is the OO version of C

@ It maintains a similar syntax, adding new keywords and
constructs

@ How the previous class can be expressed in C++?

new keyword class instead of struct |

,_— this data is private, i.e. can only be used |

class Point { / from the functions defined in the class
doubl e x, vy;

int z;
public:
Poi nt (doubl e x1, double y1);
Point ();
voi d read(ifstream & n);
voi d save(ofstream &out);
void print();
doubl e get _x();

Example in C++

@ C++ is the OO version of C

@ It maintains a similar syntax, adding new keywords and

constructs

@ How the previous class can be expressed in C++?

new keyword class instead of struct

class Point {
doubl e x, vy;
int z;
public:
Poi nt (doubl e x1, double y1);
Point ();
voi d read(ifstream & n);
voi d save(ofstream &out);
void print();
doubl e get _x();

this data is private, i.e. can only be used
from the functions defined in the class

—

keyword public indicated that the follow-
ing data and functions are public, i.e.
that can be used by ano other function

Example in C++

@ C++ is the OO version of C

@ It maintains a similar syntax, adding new keywords and

constructs

@ How the previous class can be expressed in C++?

class Point {
doubl e x, vy;
int z;
public:
Poi nt (doubl e x1,
Point ();
voi d read(ifstream & n);
voi d save(ofstream &out);
void print();
doubl e get _x();

doubl e y1);

—

<t

new keyword class instead of struct |

this data is private, i.e. can only be used
from the functions defined in the class

keyword public indicated that the follow-
ing data and functions are public, i.e.
that can be used by ano other function

XThis is the constructor: it is used to ini-

tialize an object with proper data values

Example in C++

@ C++ is the OO version of C

@ It maintains a similar syntax, adding new keywords and
constructs

@ How the previous class can be expressed in C++?

new keyword class instead of struct |

,_— this data is private, i.e. can only be used

class Point { / from the functions defined in the class
doubl e x, vy;

int z: | keyword public indicated that the follow-
publ i c: ing data and functions are public, i.e.
Poi nt (doubl e x1, double yl1): .| that can be used by ano other function

Point ();

voi d read(ifstream & n);

voi d save(ofstream &out);

voi d print(); There can be more than one construc-

doubl e get_x(); tor (many different ways to construct the
b same object)

XThis is the constructor: it is used to ini-
tialize an object with proper data values

L}

Example in C++

@ C++ is the OO version of C

@ It maintains a similar syntax, adding new keywords and
constructs

@ How the previous class can be expressed in C++?

new keyword class instead of struct |

,_— this data is private, i.e. can only be used

class Point { / from the functions defined in the class
doubl e x, vy;

keyword public indicated that the follow-

int z; —
publ i c: ing data and functions are public, i.e.
Poi nt (doubl e x1, double y1); .| that can be used by ano other function
PO! nt(); . S "-k This is the constructor: it is used to ini-
voi d read(ifstream & n); o L : .
. . tialize an object with proper data values
voi d save(ofstream &out);
voi d print(); _ There can be more than one construc-
. doubl e get_x(); tor (many different ways to construct the
b same object)

this function is part of the class, i.e. it
can access all private data of the class

Usage

@ This is an example of how the class Point can be used in a
program.

int main()

Poi nt p(2,0);
Poi nt q;

p.print();

p. X;

}

Usage

@ This is an example of how the class Point can be used in a

program.
Declares, defines and initialize a object
of type Point. The constructor is invoked
int main()
{
Poi nt p(2,0);
Poi nt q;
p.print();
p. X;
}

Usage

@ This is an example of how the class Point can be used in a
program.

Declares, defines and initialize a object
of type Point. The constructor is invoked

int main() .
{ | The default constructor is invoked
Poi nt p(2, O)) —/

Poi nt q;
p.print();
p. X;

}

Usage

@ This is an example of how the class Point can be used in a

program.

int main()

Poi nt p(2,0);
Poi nt q;

p.print();

p. X;

}

——

Declares, defines and initialize a object
of type Point. The constructor is invoked

The default constructor is invoked

Access a public member of class Point
on the object p. In this specific case, in-
voked the function print() of class Point
on object p.

Usage

@ This is an example of how the class Point can be used in a

program.

int main()

Poi nt p(2,0);
Poi nt q;

p.print();

p. X;

}

——

Declares, defines and initialize a object
of type Point. The constructor is invoked

The default constructor is invoked

Access a public member of class Point
on the object p. In this specific case, in-
voked the function print() of class Point
on object p.

This is a compilation error: x is a pri-
vate member of Point and cannot be ac-
cessed from the other parts of the pro-
gram.

Implementation

@ Implementation usually goes into a separate class

point.cpp

point.cpp

point.cpp

#incl ude <i ostrean»
#i ncl ude "point. hpp"

Point::Point() : x(0), y(0), z(0)
{}

x(x1), y(y1), z(0)

void Point::print()

cout << "(" << x << "," <<y <<

}

Poi nt: : Poi nt (doubl e x1, double yl1) :

")

void Point::read(ifstream&if)

{
}

in> x>y > z;

voi d Point::save(of stream &out)

out << x << " " <<y << " "
<< z << endl;

}
doubl e Point::get_x()

return Xx;

@ Notice how we specify the functions, and how we access
the member variables (i.e. variables defined inside the

class).

Dynamic memory allocation

C language C++ language

int *p = (int *)malloc(sizeof(int)); int *p = new int(0);
int ra = (int *x)malloc(10+sizeof (int)); int *ra = new [10] int;
free(p); delete p;

free(a); delete a;

@ C++ uses the special keyword new, and a more automatic
syntax (you can specify the type, and there is no need to
speficy the size)

Is that all?

@ C++is a complex language, and we have just seen a few
very basic concepts

@ We have no time to present C++ in details. However, these
very basic things should be necessary to start reasoning
on data structures

@ We will see more features as we go on.

Outline

9 First data structure: stack

Stack

@ A stack is a very simple data structure.

@ A stack can hold a set of uniform data, like an array (for
example, integers)

@ Data is ordered according to the LIFO (Last-In-First-Out)
strategy

Two main operations are defined on
the data structure:

@ Push: a new data in inserted in 2,
the stack %@%
@ Pop: data is extracted from the
stack

Usually, we can also read the element at the top of the stack
with a Top operation

Stack interface

@ Let's start by defining a stack of integers of fixed size
@ Initially, we will allow only a maximum number of elements
in the stack

stack.hpp

#i fndef __ STACK HPP__
#define __ STACK HPP__

class Stack {
int array[10];
int top;
public:
Stack();
voi d push(int eleny;
int pop();
int query();
void print();
h

#endi f

Stack implementation
@ Here is the implementation

stack.cpp

#i ncl ude <i ostreanr
#i ncl ude "stack. hpp"

usi ng nanmespace std;

St ack: : St ack()
{
}

voi d Stack::push(int elem
{

top(0)

if (top < 10) array[top++] =
el se cerr << "Stack is full,

}

int Stack:: pop()

{
if (top > 0)
el se cerr << "Stack:: pop()

el em
push operation fail ed"

return array[--top];

is enpty" << endl;

<< endl;

Stack implementation - 2

stack.cpp

int Stack::query()

if (top > 0) return array[top-1];

el se cerr << "Stack::query() : is enpty" << endl;
}
voi d Stack::print()
{

int i;

cout << "["
for (i=0; i<top; i++) cout << array[i] << ",";
cout << "]" << endl;

Usage

@ This is only an example of how to use the Stack class.

stackmain.cpp

#i ncl ude "stack. hpp"
#i ncl ude <i ostreanr

usi ng nanmespace std;

int main()

{
Stack s;
int i;

s. push(5);
for (i=0; i<12; i++) s.push(2+i);

s.print();

for (i=0; i<5; i++) cout << s.pop() << endl;

Stack: unlimited size

@ Let’s remove the limitation on the size
@ We want a stack that enlarges itself dynamically

stackdyn.hpp

#i fndef _ STACKDYN HPP__
#define _ STACKDYN HPP__

class Stack {
int ~array;
int cursize
int top;
public:
Stack();
~Stack();
voi d push(int elen);
int pop();
int query();
void print();
H

#endi f

Destructor

@ The function ~St ack() is called destructor

@ Itis automatically called when an object of type stack is
destroyed

@ As we will see in the implementation, in our case we need
to deallocate the memory allocated by new with a
corresponding delete.

Constructor and Destructor in stackdyn

10

12

14

16

stackdyn.cpp

#i ncl ude <i ostreanr
#i ncl ude "stackdyn. hpp"

usi ng nanespace std;
#define INC_SIZE 5

Stack:: Stack() : top(0), cursize(lNC_SIZE)
{

}

St ack: : ~St ack()
{

}

array = new int[INC_SI ZE];

del ete array;

Dynamic size stack implementation

19

21

23

25

27

29

31

33

35

stackdyn.cpp

voi d Stack::push(int elem

}

if (top >= cursize) {
int i;
int *xtenp = new int[cursize + | NC_ S| ZF];
for (i=0; i<top; i++) tenp[i] = array[il];
del ete array;
array = tenp;
cursize += I NC_SI ZE;

array[top++] = elem

int Stack::pop()

if (top > 0) return array[--top];
el se cerr << "Stack::pop() : is enpty" << endl;

Outline

9 Queue

Queue

@ Let us now implement a queue of integers

@ The policy for inserting / extracting elements is FIFO
(First-In-First-Out)

Two operations:

@ engueue inserts a new element IEnqu@.ue
in the queue

@ dequeue extracts an element IIIII -
from the queue °eq“eue|

Circular array

@ Let’s start again from a fixed size array

queue.hpp

#i fndef __ QUEUE_HPP__
#define __ QUEUE _HPP__

class Queue {
int array[10];
int head,
int tail;
int num
public:
Queue();
voi d enqueue(int elem;
int dequeue();
void print();
H

#endi f

Queue implementation

11

13

15

17

queue.cpp

#i ncl ude "queue. hpp"
#i ncl ude <i ostreanr

usi ng nanmespace std

Queue: : Queue() : head(0), tail(0), num0)
{
}

voi d Queue: : enqueue(int elem
{
if (num< 10) {
array[head] = elem
head = (head + 1) % 10
numt+

}

el se cerr << "Queue::enqueue() : queue is full"

<< endl

Queue implementation - 2

queue.cpp
int Queue::dequeue()
21 |{
int ret =0;
23 if (num> 0) {
ret = array[tail];
25 tail = (tail + 1) % 10;
num - ;
27 }
el se cerr << "Queue::dequeue() : queue is enpty" << endl;
29
return ret;
31 |}

Queue implementation - 3

queue.cpp

33 |void Queue::print()

{
35 int i;
cout << "[";
37 for (i=0; i<num i++) cout << array[(tail + i)%0] << ","

cout << "]" << endl;
39 |}

	From struct to classes
	First data structure: stack
	Queue

