Introduction to the C programming language
From C to C++: Stack and Queue

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

February 23, 2010

Outline

ﬂ From struct to classes

9 First data structure: stack

e Queue

http://retis.sssup.it/~lipari

Abstract data types

@ An important concept in programming is the Abstract Data
Type (ADT)

@ An abstract data type is a user-defined type, that can be
used similarly to built-in data types

@ An ADT defines

@ What kind of values the data type can assume (domain)
@ What operations we can perform on the data type

@ How the data and the operations are implemented is
hidden to the user, and it is part of the implementation

ADT in C

@ ADT are a general concept that can be supported in any
language, including Assembler, Basic, C

@ Example of ADT in C

struct point {
doubl e x, vy;
int z;

s

voi d point_read(ifstream & n, point =*p);
voi d poi nt_save(of stream &out, point *p);
voi d point_print(point *p);

@ The structure defines the domain (i.e. how the data is
composed by three components)
The three functions define the operations we can do on the
data

@ Itis not very nice to program ADT in C, because there is
little support from the language. ADT are well supported in
Object Oriented (OO) languages

Example in C++

@ C++is the OO version of C
@ It maintains a similar syntax, adding new keywords and

constructs

@ How the previous class can be expressed in C++7?

class Point { é___////////////
doubl e x, v;
int z;

publ i c: +___,///”’///’/
Poi nt (doubl e x1, double yl);
Poi nt () ;
void read(ifstream & n);
voi d save(of stream &out);

-

-

-

new keyword class instead of struct

this data is private, i.e. can only be used
from the functions defined in the class

keyword public indicated that the follow-
ing data and functions are public, i.e.
that can be used by ano other function

| ——

lThis is the constructor: it is used to ini-
tialize an object with proper data values

There can be more than one construc-
tor (many different ways to construct the
same object)

this function is part of the class, i.e. it
can access all private data of the class

@ This is an example of how the class Point can be used in a

Declares, defines and initialize a object
of type Point. The constructor is invoked

The default constructor is invoked

Access a public member of class Point
on the object p. In this specific case, in-
voked the function print() of class Point
on object p.

This is a compilation error: x is a pri-

void print();
doubl e get _x();

}

Usage
program.

int main()

{ -
Poi nt p(2,0); /
Poi nt q; —
p.print(); _/
p. X;

}

vate member of Point and cannot be ac-

cessed from the other parts of the pro-
gram.

Implementation

@ Implementation usually goes into a separate class

point.cpp

c-cplusplus/point.cpp

c-cplusplus/point.cpp

#i ncl ude <i ostreanr
#i ncl ude "point. hpp"

Point::Point() : x(0), y(0), z(0)
{}

Poi nt: : Poi nt (doubl e x1, double y1) :
x(x1), y(yl), z(0)
{}

void Point::print()
{

}

cout << n(u << X << n,n << y << u)n;

void Point::read(ifstream &if)

{
}

in>>x >y > z;

voi d Poi nt::save(of stream &out)

{

oUt << X << " " <<y << "
<< z << endl;

}

doubl e Point:: get_x()
{

}

return X,

@ Notice how we specify the functions, and how we access
the member variables (i.e. variables defined inside the

class).

Dynamic memory allocation

C++ language

C language

int *p = (int *)malloc(sizeof(int));
int *xa = (int *)malloc(10xsizeof (int));
free(p);

free(a);

int *p = new int(0);

int *a new [10] int;

del ete p;
del ete a;

@ C++ uses the special keyword new, and a more automatic
syntax (you can specify the type, and there is no need to

speficy the size)

Is that all?

@ C++ is a complex language, and we have just seen a few
very basic concepts

@ We have no time to present C++ in details. However, these
very basic things should be necessary to start reasoning
on data structures

@ We will see more features as we go on.

Stack

@ A stack is a very simple data structure.
@ A stack can hold a set of uniform data, like an array (for
example, integers)

@ Data is ordered according to the LIFO (Last-In-First-Out)
strategy

Two main operations are defined on
the data structure:

@ Push: a new data in inserted in N5y
the stack %@
ﬁ\

@ Pop: data is extracted from the
stack

Usually, we can also read the element at the top of the stack
with a Top operation

Stack interface

@ Let’s start by defining a stack of integers of fixed size
o Initially, we will allow only a maximum number of elements

in the stack

c-cplusplus/stack.hpp

#i f ndef
#defi ne

__STACK _HPP__
_ STACK_HPP__

cl ass Stack {
int array[10];
int top;
public:
St ack();
void push(int elem;
int pop();
int query();
void print();
I

#endi f

Stack implementation
@ Here is the implementation

c-cplusplus/stack.cpp

#i ncl ude <i ostreanp
#i ncl ude "stack. hpp"

usi ng nanespace std;

St ack: : St ack()

{
}

voi d Stack::push(int elen
{

top(0)

if (top < 10) array[top++] =
el se cerr << "Stack is full

i nt Stack: : pop()

if (top > 0)
el se cerr << "Stack:: pop()

el em
push operation failed" << endl;

return array[--top];

is enpty" << endl;

Stack implementation - 2

c-cplusplus/stack.cpp

i nt Stack::query()

{ if (top > 0) return array[top-1];
el se cerr << "Stack::query() : is enmpty" << endl;
}
void Stack::print()
{ 9 9
int i;
cout << "[";
for (i=0; i<top; i++) cout << array[i] << ",";
cout << "]" << endl;
}
Usage

This is only an example of how to use the Stack class.

c-cplusplus/stackmain.cpp

#i ncl ude "stackdyn. hpp"
#i ncl ude <i ostreanp

usi ng nanespace std;
int main()

{
Stack s;

int i;

s. push(5);
for (i=0; i<12; i++) s.push(2*i);

s.print();

for (i=0; i<5; i++) cout << s.pop() << endl;

Stack: unlimited size

@ Let's remove the limitation on the size
@ We want a stack that enlarges itself dynamically

c-cplusplus/stackdyn.hpp

#i f ndef __ STACKDYN HPP__
#defi ne _ STACKDYN HPP__
cl ass Stack {
int xarray,;
i nt cursi ze;
int top;
public:
St ack();
~St ack() ;
voi d push(int elen;
int pop();
int query();
void print();
IE
#endi f
Destructor

@ The function ~St ack() is called destructor

@ It is automatically called when an object of type stack is
destroyed

@ As we will see in the implementation, in our case we need
to deallocate the memory allocated by new with a
corresponding delete.

Constructor and Destructor in stackdyn

c-cplusplus/stackdyn.cpp

#i ncl ude <i ostreanp
2 |#i nclude "stackdyn. hpp"

4 |using nanespace std;
6 |#define INC SIZE 5

8 |Stack::Stack() : top(0), cursize(lNC SIZE)

{
10 array = new i nt[1NC_SI ZE] ;
}
12
St ack: : ~St ack()
14 {
del ete array;
16 |}

Dynamic size stack implementation

c-cplusplus/stackdyn.cpp

voi d Stack::push(int elen

19 |{
if (top >= cursize) {
21 int i;
int xtenp = new int[cursize + | NC_SIZE];
23 for (1=0; i<top; i++) tenp[i] = array[i];
del ete array;
25 array = tenp;
cursi ze += | NC_SI ZE;
27 }
array[top++] = elem
29 |}

31 |int Stack::pop()
{

33 if (top > 0) return array[--top];
el se cerr << "Stack::pop() : is enpty" << endl;

35 |}

Queue

@ Let us now implement a queue of integers

@ The policy for inserting / extracting elements is FIFO
(First-In-First-Out)

Two operations:

@ enqueue inserts a new element Enqueue
in the gqueue IIIII

@ dequeue extracts an element 3
from the queue D‘“‘“”e“al

Circular array

@ Let’s start again from a fixed size array

c-cplusplus/queue.hpp

#i fndef _ QUEUE HPP___
#define _ QUEUE HPP_

cl ass Queue {
int array[10];
i nt head;
int tail;
i nt nun
publi c:
Queue() ;
voi d enqueue(int elem;
i nt dequeue();
void print();

#endi f

Queue implementation

c-cplusplus/queue.cpp

1 |#include "queue. hpp"
#i ncl ude <i ostreanp
3
usi ng nanespace std;
5
Queue: : Queue() : head(0), tail(0), num0)
7 | {
}
9
voi d Queue: : enqueue(int elem
11 {
if (num < 10) {
13 array[head] = el em
head = (head + 1) % 10;
15 numt+;
}

Queue implementation - 2

c-cplusplus/queue.cpp

}
19
i nt Queue: : dequeue()
21 |{
int ret = 0;
23 if (num> 0) {
ret = array[tail];
25 tail = (tail + 1) % 10;
num - ;
27 }
el se cerr << "Queue::dequeue() : queue is enpty" << endl

Queue implementation - 3

31

33

35

37

39

c-cplusplus/queue.cpp

}

voi d Queue: :print()
{
int i;
cout << "[";

for (i=0; i<num i++) cout << array[(tail + i)%d0] << ","

cout << "]" << endl;

	From struct to classes
	First data structure: stack
	Queue

