
Introduction to the C programming language
From C to C++: Stack and Queue

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

February 23, 2010

http://retis.sssup.it/~lipari


Outline

1 From struct to classes

2 First data structure: stack

3 Queue



Outline

1 From struct to classes

2 First data structure: stack

3 Queue



Abstract data types

An important concept in programming is the Abstract Data
Type (ADT)

An abstract data type is a user-defined type, that can be
used similarly to built-in data types
An ADT defines

What kind of values the data type can assume (domain)
What operations we can perform on the data type

How the data and the operations are implemented is
hidden to the user, and it is part of the implementation



ADT in C
ADT are a general concept that can be supported in any
language, including Assembler, Basic, C

Example of ADT in C

struct point {
double x, y;
int z;

};

void point_read(ifstream &in, point *p);
void point_save(ofstream &out, point *p);
void point_print(point *p);

The structure defines the domain (i.e. how the data is
composed by three components)
The three functions define the operations we can do on the
data

It is not very nice to program ADT in C, because there is
little support from the language. ADT are well supported in
Object Oriented (OO) languages



Example in C++

C++ is the OO version of C

It maintains a similar syntax, adding new keywords and
constructs

How the previous class can be expressed in C++?

class Point {
double x, y;
int z;

public:
Point(double x1, double y1);
Point();
void read(ifstream &in);
void save(ofstream &out);
void print();
double get_x();

};



Example in C++

C++ is the OO version of C

It maintains a similar syntax, adding new keywords and
constructs

How the previous class can be expressed in C++?

class Point {
double x, y;
int z;

public:
Point(double x1, double y1);
Point();
void read(ifstream &in);
void save(ofstream &out);
void print();
double get_x();

};

new keyword class instead of struct



Example in C++

C++ is the OO version of C

It maintains a similar syntax, adding new keywords and
constructs

How the previous class can be expressed in C++?

class Point {
double x, y;
int z;

public:
Point(double x1, double y1);
Point();
void read(ifstream &in);
void save(ofstream &out);
void print();
double get_x();

};

new keyword class instead of struct

this data is private, i.e. can only be used
from the functions defined in the class



Example in C++

C++ is the OO version of C

It maintains a similar syntax, adding new keywords and
constructs

How the previous class can be expressed in C++?

class Point {
double x, y;
int z;

public:
Point(double x1, double y1);
Point();
void read(ifstream &in);
void save(ofstream &out);
void print();
double get_x();

};

new keyword class instead of struct

this data is private, i.e. can only be used
from the functions defined in the class

keyword public indicated that the follow-
ing data and functions are public, i.e.
that can be used by ano other function



Example in C++

C++ is the OO version of C

It maintains a similar syntax, adding new keywords and
constructs

How the previous class can be expressed in C++?

class Point {
double x, y;
int z;

public:
Point(double x1, double y1);
Point();
void read(ifstream &in);
void save(ofstream &out);
void print();
double get_x();

};

new keyword class instead of struct

this data is private, i.e. can only be used
from the functions defined in the class

keyword public indicated that the follow-
ing data and functions are public, i.e.
that can be used by ano other function

This is the constructor: it is used to ini-
tialize an object with proper data values



Example in C++

C++ is the OO version of C

It maintains a similar syntax, adding new keywords and
constructs

How the previous class can be expressed in C++?

class Point {
double x, y;
int z;

public:
Point(double x1, double y1);
Point();
void read(ifstream &in);
void save(ofstream &out);
void print();
double get_x();

};

new keyword class instead of struct

this data is private, i.e. can only be used
from the functions defined in the class

keyword public indicated that the follow-
ing data and functions are public, i.e.
that can be used by ano other function

This is the constructor: it is used to ini-
tialize an object with proper data values

There can be more than one construc-
tor (many different ways to construct the
same object)



Example in C++

C++ is the OO version of C

It maintains a similar syntax, adding new keywords and
constructs

How the previous class can be expressed in C++?

class Point {
double x, y;
int z;

public:
Point(double x1, double y1);
Point();
void read(ifstream &in);
void save(ofstream &out);
void print();
double get_x();

};

new keyword class instead of struct

this data is private, i.e. can only be used
from the functions defined in the class

keyword public indicated that the follow-
ing data and functions are public, i.e.
that can be used by ano other function

This is the constructor: it is used to ini-
tialize an object with proper data values

There can be more than one construc-
tor (many different ways to construct the
same object)

this function is part of the class, i.e. it
can access all private data of the class



Usage

This is an example of how the class Point can be used in a
program.

int main()
{
Point p(2,0);
Point q;

p.print();

p.x;
}



Usage

This is an example of how the class Point can be used in a
program.

int main()
{
Point p(2,0);
Point q;

p.print();

p.x;
}

Declares, defines and initialize a object
of type Point. The constructor is invoked



Usage

This is an example of how the class Point can be used in a
program.

int main()
{
Point p(2,0);
Point q;

p.print();

p.x;
}

Declares, defines and initialize a object
of type Point. The constructor is invoked

The default constructor is invoked



Usage

This is an example of how the class Point can be used in a
program.

int main()
{
Point p(2,0);
Point q;

p.print();

p.x;
}

Declares, defines and initialize a object
of type Point. The constructor is invoked

The default constructor is invoked

Access a public member of class Point
on the object p. In this specific case, in-
voked the function print() of class Point
on object p.



Usage

This is an example of how the class Point can be used in a
program.

int main()
{
Point p(2,0);
Point q;

p.print();

p.x;
}

Declares, defines and initialize a object
of type Point. The constructor is invoked

The default constructor is invoked

Access a public member of class Point
on the object p. In this specific case, in-
voked the function print() of class Point
on object p.

This is a compilation error: x is a pri-
vate member of Point and cannot be ac-
cessed from the other parts of the pro-
gram.



Implementation

Implementation usually goes into a separate class
point.cpp

c-cplusplus/point.cpp

#include <iostream>
#include "point.hpp"

Point::Point() : x(0), y(0), z(0)
{}

Point::Point(double x1, double y1) :
x(x1), y(y1), z(0)

{}

void Point::print()
{

cout << "(" << x << "," << y << ")";
}

c-cplusplus/point.cpp

void Point::read(ifstream &if)
{

in >> x >> y >> z;
}

void Point::save(ofstream &out)
{

out << x << " " << y << " "
<< z << endl;

}

double Point::get_x()
{

return x;
}

Notice how we specify the functions, and how we access
the member variables (i.e. variables defined inside the
class).



Dynamic memory allocation

C language

int *p = (int *)malloc(sizeof(int));

int *a = (int *)malloc(10*sizeof(int));

...

free(p);
free(a);

C++ language

int *p = new int(0);

int *a = new [10] int;

...

delete p;
delete a;

C++ uses the special keyword new, and a more automatic
syntax (you can specify the type, and there is no need to
speficy the size)



Is that all?

C++ is a complex language, and we have just seen a few
very basic concepts

We have no time to present C++ in details. However, these
very basic things should be necessary to start reasoning
on data structures

We will see more features as we go on.



Outline

1 From struct to classes

2 First data structure: stack

3 Queue



Stack

A stack is a very simple data structure.

A stack can hold a set of uniform data, like an array (for
example, integers)

Data is ordered according to the LIFO (Last-In-First-Out)
strategy

Two main operations are defined on
the data structure:

Push: a new data in inserted in
the stack

Pop: data is extracted from the
stack

Usually, we can also read the element at the top of the stack
with a Top operation



Stack interface

Let’s start by defining a stack of integers of fixed size
Initially, we will allow only a maximum number of elements
in the stack

c-cplusplus/stack.hpp

#ifndef __STACK_HPP__
#define __STACK_HPP__

class Stack {
int array[10];
int top;

public:
Stack();
void push(int elem);
int pop();
int query();
void print();

};

#endif



Stack implementation
Here is the implementation

c-cplusplus/stack.cpp

#include <iostream>
#include "stack.hpp"

using namespace std;

Stack::Stack() : top(0)
{
}

void Stack::push(int elem)
{

if (top < 10) array[top++] = elem;
else cerr << "Stack is full, push operation failed" << endl;

}

int Stack::pop()
{

if (top > 0) return array[--top];
else cerr << "Stack::pop() : is empty" << endl;

}



Stack implementation - 2

c-cplusplus/stack.cpp

int Stack::query()
{

if (top > 0) return array[top-1];
else cerr << "Stack::query() : is empty" << endl;

}

void Stack::print()
{

int i;
cout << "[";
for (i=0; i<top; i++) cout << array[i] << ",";
cout << "]" << endl;

}



Usage

This is only an example of how to use the Stack class.
c-cplusplus/stackmain.cpp

#include "stackdyn.hpp"
#include <iostream>

using namespace std;

int main()
{

Stack s;
int i;

s.push(5);
for (i=0; i<12; i++) s.push(2*i);

s.print();

for (i=0; i<5; i++) cout << s.pop() << endl;
}



Stack: unlimited size

Let’s remove the limitation on the size
We want a stack that enlarges itself dynamically

c-cplusplus/stackdyn.hpp

#ifndef __STACKDYN_HPP__
#define __STACKDYN_HPP__

class Stack {
int *array;
int cursize;
int top;

public:
Stack();
~Stack();
void push(int elem);
int pop();
int query();
void print();

};

#endif



Destructor

The function ~Stack() is called destructor

It is automatically called when an object of type stack is
destroyed

As we will see in the implementation, in our case we need
to deallocate the memory allocated by new with a
corresponding delete.



Constructor and Destructor in stackdyn

c-cplusplus/stackdyn.cpp

#include <iostream>
2 #include "stackdyn.hpp"

4 using namespace std;

6 #define INC_SIZE 5

8 Stack::Stack() : top(0), cursize(INC_SIZE)
{

10 array = new int[INC_SIZE];
}

12

Stack::~Stack()
14 {

delete array;
16 }



Dynamic size stack implementation

c-cplusplus/stackdyn.cpp

void Stack::push(int elem)
19 {

if (top >= cursize) {
21 int i;

int *temp = new int[cursize + INC_SIZE];
23 for (i=0; i<top; i++) temp[i] = array[i];

delete array;
25 array = temp;

cursize += INC_SIZE;
27 }

array[top++] = elem;
29 }

31 int Stack::pop()
{

33 if (top > 0) return array[--top];
else cerr << "Stack::pop() : is empty" << endl;

35 }



Outline

1 From struct to classes

2 First data structure: stack

3 Queue



Queue

Let us now implement a queue of integers

The policy for inserting / extracting elements is FIFO
(First-In-First-Out)

Two operations:

enqueue inserts a new element
in the queue

dequeue extracts an element
from the queue



Circular array

Let’s start again from a fixed size array

c-cplusplus/queue.hpp

#ifndef __QUEUE_HPP__
#define __QUEUE_HPP__

class Queue {
int array[10];
int head;
int tail;
int num;

public:
Queue();
void enqueue(int elem);
int dequeue();
void print();

};

#endif



Queue implementation

c-cplusplus/queue.cpp

1 #include "queue.hpp"
#include <iostream>

3

using namespace std;
5

Queue::Queue() : head(0), tail(0), num(0)
7 {

}
9

void Queue::enqueue(int elem)
11 {

if (num < 10) {
13 array[head] = elem;

head = (head + 1) % 10;
15 num++;

}



Queue implementation - 2

c-cplusplus/queue.cpp

}
19

int Queue::dequeue()
21 {

int ret = 0;
23 if (num > 0) {

ret = array[tail];
25 tail = (tail + 1) % 10;

num--;
27 }

else cerr << "Queue::dequeue() : queue is empty" << endl;



Queue implementation - 3

c-cplusplus/queue.cpp

31 }

33 void Queue::print()
{

35 int i;
cout << "[";

37 for (i=0; i<num; i++) cout << array[(tail + i)%10] << ",";
cout << "]" << endl;

39 }


	From struct to classes
	First data structure: stack
	Queue

