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Outline

@ Searching



Searching

@ Suppose we have an address list.
@ For each person name, we have the address and the
telephone number.
@ All entries are stored in an array.



Class Entry

@ The following class represents an entry

address.hpp

class Entry {
char nane[ 50];
char address[100];
char tel ephone[ 20];
public:
Entry();
Entry(char *s, char *a, char *t);
char =*get_nane();
char *get_address();
char =*get_tel ephone();
void print();

}




Class AddressBook

@ The following class represents an address book with
maximum 100 entries

address.hpp

cl ass AddressBook {
Entry array[ 100];
int num

public:
Addr essBook() ;
void insert(Entry e);
Entry search(char *nane);
void printall();

}




Implementation of Entry

address.cpp

Entry::Entry()

{
strcpy(name, "");
strcpy(address,
strcpy(tel ephone,
}

Entry::Entry(char +s,
{
strncpy(nane, s,
strncpy(address,

strncpy(tel ephone, t,

")

")

char =a,

50);
a, 100);
20);

char =*t)




Implementation of AddressBook

address.cpp

Addr essBook: : Addr essBook() : nun{(0)

{}
voi d AddressBook::insert(Entry e)
{

array[ numt+] = e;
}
Entry AddressBook:: search(char =*nane)
{

int i;

Entry null _entry;

for (i=0; i<num i++) {

if (strcnp(nane, array[i].get_nanme()) == 0)
return array[i];

}

return null _entry;
}

@ Notice that we must go through the entire list if we want to
search for an element



Main

@ Reading from file

mainl.cpp

{

int main(int argc, char xargv[])

if (argc < 2) {

cout << "Usage: " << argv[0] << "

exit(-1);

ifstreamf(argv[1]);
char s[50]; char a[100]; char t[20];

while (If.eof ()) {
f >>s;
if (f.eof()) break;
f.getline(a, 99);
f.getline(t, 19);
Entry e(s, a, t);
abook. i nsert(e);

}
abook. printall ();

<fil ename> "

<< endl;




Main - Il

@ Searching names:

mainl.cpp

bool quit = false;
while (lquit) {
cout << "Insert Nane to search: ";

cin > s;

if (stremp(s, "quit") == 0) break;

el se {
Entry e = abook.search(s);
cout << "Result: " << endl;
e.print();

}




Improving the data structures

@ We have two problems here:
@ Fixed size: we can allow only 100 entries. It would be better
to dynamically change the size of the array depending on

the needs of the program
@ Searching takes linear time with the number of entries. Can

we do better than that?
@ Let's first solve the second problem



Improving search time

@ The idea is to sort the array first
@ Then, start looking in the middle

o If we have found the entry, finish with success

@ If the entry is “greater” than the one we look for, continue
looking in the first half

o If the entry is “less” than the one we look for, continue
looking in the second half

@ This is a recursive algorithm!

@ Exercise:

@ Implementasort () function for the AddressBook class

@ modify the previous “search()” function to implement the
algorithm described above (hint: may need an intermediate
function)



Outline

e Lists



Lists

@ One important data structure is the linked list

@ The nice and important property of a list is the possibility to
insert elements at any point without requiring any complex
operation



Ordered Insertion

@ Problem: suppose we have an ordered array of integers,
from smalles to largest

@ Suppose that we need to insert another number, and that
after insertion the array must still be ordered

@ Solution 1: Insert at the end, then run a sorting algorithm
(i.e. insert sort or bubble sort)
@ Solution 2: Identify where the number has to be inserted,
and move all successive numbers one position forth
@ Both solutions require additional effort to maintain the data
structured ordered
@ Another solution is to have completely different data
structure



Lists

@ Alistis a chain of linked elements

head
LT e ] o

@ Every element of the list contains the data (in this case an
integer), and a pointer to the following element in the list




List of Addresses

@ We now see how we can use a list to implement an
address book

@ First of all we define a list element

list.hpp

#i ncl ude "address. hpp"

class ListEntry {
Entry entry;
Li stEntry *next;

public:
Li stEntry(Entry e)
void link(ListEntry *next)
Entry get_data();
ListEntry *get_next();

@ From addr ess. hpp, we reuse the Entry class



List definition

@ Now the class AddressList class

list.hpp

cl ass AddressList {
Li stEntry *head;
public:
AddressList();
void insert(Entry e);
Entry search(char *s);
void printall();

@ Notice how similar is the interface with AddressBook



Implementation of ListEntry

list.cpp
ListEntry::ListEntry(Entry e): entry(e), next(0)
{}
void ListEntry::link(ListEntry =*n)
{
next = n;
}
Entry ListEntry::get_data()
{
return entry,;
}
ListEntry *ListEntry::get_next()
{
return next;
}




Implementation of AddressList

@ Theinsert () operation requires to go through the list until

we find the correct position

list.cpp

Addr essLi st:: AddressList() : head(0)
{}

void AddressList::insert(Entry e)
{
ListEntry *le = new ListEntry(e);
ListEntry *p = head;
ListEntry *q = 0;
while (p !'=0) {

qa-=p
p = p->get_next();
}
el se break;
}
if (g ==0) // Insertion at the head
head = |¢;
el se g->link(le);
I e->link(p);

if (strcnp(p->get_data().get_nane(),

e.get_name()) > 0) {




Implementation of AddressList
@ Searching and printing

list.cpp

Entry AddressList::search(char xs)

{
ListEntry *p = head;
Entry null _entry;
while (p !'=0) {
if (strcnp(p->get_data().get_nane(), s) == 0)
return p->get_data();
el se p = p->get_next();
}
return null _entry;
}

void AddressList::printall()

Li stEntry *p=head;

while (p !'=0) {
p->get _data().print();
p=p->get _next();




Main
@ Almost the same as in AddressBook, except for the type of
the variable abook, and the includes.

main2.cpp

#include "list. hpp"
usi ng nanespace std;

Addr essLi st abook;

main2.cpp

bool quit = false;
while (lquit) {
cout << "Insert Nanme to search: ";

cin >> s;

if (strenp(s, "quit") == 0) break;

el se {
Entry e = abook.search(s);
cout << "Result: " << endl;
e.print();

}




Problems with lists

@ One of the problems with the list is that searching is a O(n)
operation

@ while the previous algorithm on the array was O(log(n))

@ The list is useful if we frequently insert and extract from the
head

@ For example, inside an operating system, the list of
processes (executing programs) may be implemented as a
list ordered by process priority

@ In general, when most of the operations are
inserting/estracting from the headm the list is the simplest
and most effective solution



Data structures so far

@ Stack
@ Insertion/extraction only at/from the top (LIFO)
@ All operations are O(1)
@ Queue (Circular Array)
@ Insertion at tail, extraction from head (FIFO)
@ All operations are O(1)
@ Array (random access)

Insertion at any point requires O(n)
Extraction from any point requires O(n)
Sorting requires O(n log(n))

Searching (in sorted array) requires O(log(n))

@ List (ordered)

@ Insertion at any point requires O(n)
@ Extraction from any point requires O(1)
@ Searching requires O(n)

@ & 6 ¢



More powerful data structures

@ No data structure so far allows:
@ Insertion in O(log(n))
@ Searching in O(log(n))
@ It is important to implement efficienlty such data structures,
because in most application you exactly need to seach the
data structure very efficiently, and insert/remove efficiently

@ On such data structure is the balanced binary tree
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Trees

@ A tree is a data structure where each element can have
two children

@ The parent element can be the child of another higher level
element

@ The topmost element is called root




Recursion

@ The tree is a recursive data structure
@ The root node has two subtrees, one on the left and one on
the right
@ Each node can be seen has root of its own subtree
@ Recursive definition : atree can be

@ empty (i.e. contains no nodes)
@ consisting of one root node, plus one left tree and one right
tree

@ The tree is defined by itself!



Searching in a tree

@ Given a node that contains element k, the main idea is:
@ to put all elements that are less than k to the left
o to put all elements that are greater than k to the right
@ If the tree is balanced (i.e. it has approximately the same
number of nodes in the left and in the right subtrees),
searching takes O(log(n))
@ Also, insertion takes O(log(n))
@ However, inserting elements make the tree unbalanced



Example of tree
@ In the following figure we have a tree of integers

Binary Search Tree Example

Tree vesulting from the following insertions: 38, 13, 51, 10, 12, 40, 84, 25, 89, 37, 66, 95
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Tree interface

@ Here is an example of class that implements a simple tree

simpletree.hpp

cl ass AddressTree {
public:
AddressTree();
void insert(Entry e);
Entry search(char =*s);
void print_all();
void print_structure();
private:
TreeEntry xroot;

TreeEntry * _insert(TreeEntry *r, Entry e);
Entry _search(TreeEntry *r, char =*s);

int _get_level (TreeEntry xr);

void _print_all(TreeEntry *r);

void _print_level (TreeEntry *r, int I, int n);




Tree implementation - 1

@ The functions insert and search call the internal recursive
versions

simpletree.cpp

AddressTree: : AddressTree() : root(0)
{}

voi d AddressTree::insert(Entry e)

root = _insert(root, e);
}
Entry AddressTree::search(char xs)
{

return _search(root, s);

}




Tree searching

@ Simply looks in the current node, in the left one or in the

right one

simpletree.cpp

Entry null _entry;
if (r ==0) return null_entry;

return r->get_data();
return _search(r->get_left(),

return _search(r->get_right(),
else return null_entry;

Entry AddressTree::_search(TreeEntry =*r,

else if (strcnp(r->get_data().get_nane(),

else if (strcnp(r->get_data().get_nanme(),

s);

else if (strcnp(r->get_data().get_nanme(),

s);

char *s)

s) == 0)
s) < 0)

s) > 0)




Tree insertion

@ Interts to the right or to the left, depending on the ordering

simpletree.cpp

TreeEntry *AddressTree:: _insert(TreeEntry *r, Entry e)

if (r ==0)
r = new TreeEntry(e);

else if (strcnp(r->get_data().get_nanme(), e.get_nanme()) < 0)
r->link_left(_insert(r->get_left(), e));

else if (strcnp(r->get_data().get_nanme(), e.get_nanme()) > 0)
r->link_right(_insert(r->get_right(), e));

else if (strcnp(r->get_data().get_nane(), e.get_nane()) == 0)
cout << "Elerment already present" << endl;

return r;




The main

@ The same as before

maintree.cpp

Addr essTree abook;

int main(int argc, char *argv[])
{
if (argc < 2) {
cout << "Usage:
exit(-1);

<< argv[0] << " <filename> " << endl;

ifstreamf (argv[1]);
char s[50]; char a[100]; char t[20];

while (!f.eof()) {
f >>s;
if (f.eof ()) break;
f.getline(a, 99);
f.getline(t, 19);
Entry e(s, a, t);
abook. i nsert(e);

abook. print_all();
abook. print_structure();

bool quit = false;




Balance

@ Unfortunately, the tree is not balances
@ (see output of maintree on example2.txt)

@ This means that the insertion and search operation do not
necessarily take O(log(n))
@ Itis necessary to constantly keep the tree balanced to
achieve good performance



Outline

@ AVL tree



Height

@ The height of a tree is how may pointers | have to follow in
the worst case before reaching a leaves
@ It can be defined recursively;

@ The height of an empty tree is 0
@ The height of a tree is equal to the maximum between the
heights of the left and right subtrees plus 1

@ Example: what is the height of this subtree?

Binary Search Tree Example

Tree resulting from the following insertions: 38, 13,51, 10, 12, 40, 84, 25, 89, 37, 66, 95
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Balance

@ The difference between the height of the left subtree and
the height of the right subtree is called balance.
@ Atree is said to be balanced if

o the balanceis-1,00r1
@ Both the left and the right subtrees are balanced

@ (again a recursive definition!)
@ Is the tree in the previous slide balanced?
@ What is the balance of the tree obtained by example2.txt?



Rotation

@ When we insert a new element, the tree can become
unbalanced

@ Therefore, we have to re-balance it

@ The operation that we use to balance the tree must
preserve the ordering!
@ The balance can be obtained by rotating a tree

@ A rotate operation charges the structure of the tree so that
the tree becomes balanced after the operation, and the
order is preserved

@ There are many different implementation of the rotation
operation, that produce different types of balanced tree

@ Red-black trees
@ AVL trees
@ etc.

@ We will analyze the AVL tree



Left-left rotation

@ Suppose the tree with root X is unbalanced to the left (i.e.
balance = —2)

@ In this case, the height of the left subtree (with root Y) is
larger than the height of the right subtree by 2 levels

@ Also, suppose that the left subtree of Y (which has root Z)
is higher than its right subtree

@ We apply a left rotation:

X Y

O O

o
o — D
o



Left-left rotation

@ What happened? .
o Before the rotation, O
@ suppose that the right YQ/

subtree of X had

height h, ZO/ %
@ Y had height h + 2
@ Zhad heighth + 1

@ W had height h
@ After the rotation, Y is the new root

@ X has heighth + 1,
@ Zhas heighth + 1
@ Also, notice that the order is preserved:

@ Before the rotation, Z <Y <W < X
o After the rotation, Z <Y <W < X



Left-right

@ A different case is when the left subtree has balance +1
@ In such a case we need to perform a left-right rotation

@ Before the rotation, « 2

@ suppose that the right Q O
subtree of X had height v / / \ X
h @ — O ;)

o Y had height h + 2 A A\
o Z had height h + 1 Q Y
@ W had height h m/ >,\

@ After the rotation, Y is the new root

@ X has height h + 1,
@ Zhas heighth + 1

@ The order is still preserved



Rotations

@ There are 4 possible rotations

o left-left : when the tree is unbalanced to the left and the left
subtree has balance -1

@ left-right : when the tree is unbalanced to the left, and the
left subtree has balance +1

@ right-left ; when the tree is unbalanced to the right, and the
right subtree has balance -1

@ right-left : when the tree is unbalanced to the right, and the
right subtree has balance +1



Rotations
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Implementation

@ Now we look at the implementation

avltree.hpp

class AddressTree {
public:
AddressTree();
void insert(Entry e);
Entry search(char =*s);
void print_all();
void print_structure();
private:
TreeEntry =root;

TreeEntry * _insert(TreeEntry *r, Entry e);
Entry _search(TreeEntry *r, char *s);

int _get_level (TreeEntry =r);

void _print_all(TreeEntry *r);

void _print_level (TreeEntry *r, int I, int n);
TreeEntry = _rotate_||(TreeEntry =r);
TreeEntry * _rotate_|lr(TreeEntry =r);
TreeEntry * _rotate_rl(TreeEntry =r);
TreeEntry * _rotate_rr(TreeEntry =r);




Rotations (right)

avltree.cpp

TreeEntry * AddressTree:: _rotate_rr(TreeEntry *x)

{
TreeEntry *y = x->get _right();
X->link_right(y->get_left());
y->link_left(x);
return vy;
}
TreeEntry *» AddressTree::_rotate_rl (TreeEntry =x)
{

TreeEntry *y
TreeEntry =z

= x->get_right();
= y->get_left();
x->link_right(z->get_left());
y->link_left(z->get_right());
z->link_left(x);
z->link_right(y);

return z;




Rotations (left)

avltree.cpp

TreeEntry * AddressTree:: _rotate_||(TreeEntry *x)

{
TreeEntry *y = x->get _left();
x->link_left(y->get_right());
y->link_right(x);
return vy;
}
TreeEntry *» AddressTree::_rotate_|lr(TreeEntry =x)
{

TreeEntry *y
TreeEntry =z

= x->get _left();
= y->get_right();
x->link_left(z->get_right());
y->link_right(z->get_left());
z->link_right(x);
z->link_left(y);

return z;




Height

@ The following function returns the tree level:

avltree.cpp
int AddressTree::_get_level (TreeEntry xr)
{
if (r == 0) return O;
else return (1 + nmax(_get_level (r->get_left()),
_get _level (r->get_right())));
}

@ The search remains the same
@ Now we look at the insert



Insertion to the left

avltree.cpp
TreeEntry »AddressTree:: _insert(TreeEntry *r, Entry e)
{

if (r ==0)

r = new TreeEntry(e)

else if (strcnmp(r->get_data().get_nane(), e.get_nane()) < 0)
/'l insert
r->link_left(_insert(r->get_left(), e));

/1 check balance since | inserted to the left, it can be
/1 balanced, or in LL or in LR
int Il = get_level(r->get_left())
int rl = _get_level(r->get_right());
if (I > (rl + 1)) {
int |l

= _get_level(r->get_left()->get_left());
int Irl = _get_level(r->get_left()->get_right());
if (1 >1rl)
r = _rotate_II(r);
elser = _rotate_lr(r);




Insertion to the right

avltree.cpp

else if (strcnp(r->get_data().get_nane(), e.get_nane()) > 0)
r->link_right(_insert(r->get_right(), e));

int Il _get _level (r->get_left())
int rl _get_level (r->get_right()

: \
if (rl > (11 + 1) {

int rrl = _get_level (r->get_right()->get_right());
int rll = _get_level(r->get_right()->get_left());
if (rrl >rll) r = _rotate_rr(r)
elser = _rotate_rl(r);
}
else if (strcnp(r->get_data().get_name(), e.get_nanme()) == 0)

cout << "Elenent already present" << endl

return r;




A complete example

@ A complete example can be found in program
exanpl es/ mai ntree. cpp

@ Exercise: modify the code to change the order in which
the elements are stored

@ Exercise: Modify the code so that:

© All elements are stored in an array (i.e. a AddressBook
data structure), and only the pointers to the data elements
are stored in the tree

@ Write a different kind of tree that sorts elements by address.

© In this way, you will have the same data structure ordered
by name and by address at the same time
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Heap

@ An heap is a data structure that is used mainly for
implementing priority queues

@ A heap is a binary tree in which, for each node A, the value
stored in the node is always greater than the values stored
in the childen

@ The data structure is also called max-heap (or min-heap if
we require that the node be less than its children)

Figure: Example of max-heap



Properties

@ Another property of max-heap is the fact that the heap is
“full” in all its levels except maybe the last one

@ Also, on the last level, all nodes are present from left to
rightm without holes

Figure: All nodes are full from left to right



Operations

@ The most important operations you can do on a heap are:
@ Insert an element in a ordered fashion
@ Read the top element
@ Extract the top element
@ An heap is used mainly for sorted data structures in which
you need to quickly know the maximum element



Insertion

@ To insert an element, we proceed in two steps
@ First the element is inserted in the first free position in the

tree
@ Then, by using a procedure called heapify, the node is
moved to its correct position by swapping elements

@ Suppose we want to insert element 15 in the heap below

@ @ ®
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Deleting

@ For deleting an element, we proceed in a similar way

@ We first remove the top most element, and we substitute it
with the last element in the heap

@ Then, we move down the element to its correct position by
a sequence of swaps

@ Suppose that we remove the top element in the heap
below. We substitute it with the last element (4)

®
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Heap implementation

@ The heap can be efficiently implemented with an array
@ The root node is stored at index 0 of the array

@ Given a node at index i:

@ its left child can be stored at 2i + 1
@ its right child can be stored at 2i + 2

e the parent of node j is at {%J

e —1

0 1 2 3 4 5 6

QIO IOTOO

Figure: Efficently storing a heap in an array
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