
Introduction to the C programming language
Lists and Trees

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 16, 2010

http://retis.sssup.it/~lipari


Outline

1 Searching

2 Lists

3 Balanced Binary Trees

4 AVL tree

5 Heap



Outline

1 Searching

2 Lists

3 Balanced Binary Trees

4 AVL tree

5 Heap



Searching

Suppose we have an address list.
For each person name, we have the address and the
telephone number.
All entries are stored in an array.



Class Entry

The following class represents an entry

address.hpp

class Entry {
char name[50];
char address[100];
char telephone[20];

public:
Entry();
Entry(char *s, char *a, char *t);
char *get_name();
char *get_address();
char *get_telephone();
void print();

};



Class AddressBook

The following class represents an address book with
maximum 100 entries

address.hpp

class AddressBook {
Entry array[100];
int num;

public:
AddressBook();
void insert(Entry e);
Entry search(char *name);
void printall();

};



Implementation of Entry

address.cpp

Entry::Entry()
{

strcpy(name, "");
strcpy(address, "");
strcpy(telephone, "");

}

Entry::Entry(char *s, char *a, char *t)
{

strncpy(name, s, 50);
strncpy(address, a, 100);
strncpy(telephone, t, 20);

}



Implementation of AddressBook
address.cpp

AddressBook::AddressBook() : num(0)
{}

void AddressBook::insert(Entry e)
{

array[num++] = e;
}

Entry AddressBook::search(char *name)
{

int i;
Entry null_entry;
for (i=0; i<num; i++) {

if (strcmp(name, array[i].get_name()) == 0)
return array[i];

}
return null_entry;

}

Notice that we must go through the entire list if we want to
search for an element



Main

Reading from file

main1.cpp

int main(int argc, char *argv[])
{

if (argc < 2) {
cout << "Usage: " << argv[0] << " <filename> " << endl;
exit(-1);

}
ifstream f(argv[1]);
char s[50]; char a[100]; char t[20];

while (!f.eof()) {
f >> s;
if (f.eof()) break;
f.getline(a, 99);
f.getline(t, 19);
Entry e(s, a, t);
abook.insert(e);

}
abook.printall();



Main - II

Searching names:

main1.cpp

bool quit = false;
while (!quit) {

cout << "Insert Name to search: ";
cin >> s;
if (strcmp(s, "quit") == 0) break;
else {

Entry e = abook.search(s);
cout << "Result: " << endl;
e.print();

}
}

}



Improving the data structures

We have two problems here:
Fixed size: we can allow only 100 entries. It would be better
to dynamically change the size of the array depending on
the needs of the program
Searching takes linear time with the number of entries. Can
we do better than that?

Let’s first solve the second problem



Improving search time

The idea is to sort the array first
Then, start looking in the middle

If we have found the entry, finish with success
If the entry is “greater” than the one we look for, continue
looking in the first half
If the entry is “less” than the one we look for, continue
looking in the second half

This is a recursive algorithm!
Exercise:

Implement a sort() function for the AddressBook class
modify the previous “search()” function to implement the
algorithm described above (hint: may need an intermediate
function)



Outline

1 Searching

2 Lists

3 Balanced Binary Trees

4 AVL tree

5 Heap



Lists

One important data structure is the linked list

The nice and important property of a list is the possibility to
insert elements at any point without requiring any complex
operation



Ordered Insertion

Problem: suppose we have an ordered array of integers,
from smalles to largest
Suppose that we need to insert another number, and that
after insertion the array must still be ordered

Solution 1: Insert at the end, then run a sorting algorithm
(i.e. insert sort or bubble sort)
Solution 2: Identify where the number has to be inserted,
and move all successive numbers one position forth

Both solutions require additional effort to maintain the data
structured ordered

Another solution is to have completely different data
structure



Lists

A list is a chain of linked elements

head

null10953

Every element of the list contains the data (in this case an
integer), and a pointer to the following element in the list



List of Addresses

We now see how we can use a list to implement an
address book

First of all we define a list element

list.hpp

#include "address.hpp"

class ListEntry {
Entry entry;
ListEntry *next;

public:
ListEntry(Entry e);
void link(ListEntry *next);
Entry get_data();
ListEntry *get_next();

};

From address.hpp, we reuse the Entry class



List definition

Now the class AddressList class

list.hpp

class AddressList {
ListEntry *head;

public:
AddressList();
void insert(Entry e);
Entry search(char *s);
void printall();

};

Notice how similar is the interface with AddressBook



Implementation of ListEntry

list.cpp

ListEntry::ListEntry(Entry e): entry(e), next(0)
{}

void ListEntry::link(ListEntry *n)
{

next = n;
}

Entry ListEntry::get_data()
{

return entry;
}

ListEntry *ListEntry::get_next()
{

return next;
}



Implementation of AddressList
The insert() operation requires to go through the list until
we find the correct position

list.cpp

AddressList::AddressList() : head(0)
{}

void AddressList::insert(Entry e)
{

ListEntry *le = new ListEntry(e);
ListEntry *p = head;
ListEntry *q = 0;
while (p != 0) {

if (strcmp(p->get_data().get_name(), e.get_name()) > 0) {
q = p;
p = p->get_next();

}
else break;

}
if (q == 0) // Insertion at the head

head = le;
else q->link(le);
le->link(p);

}



Implementation of AddressList
Searching and printing

list.cpp

Entry AddressList::search(char *s)
{

ListEntry *p = head;
Entry null_entry;
while (p != 0) {

if (strcmp(p->get_data().get_name(), s) == 0)
return p->get_data();

else p = p->get_next();
}
return null_entry;

}

void AddressList::printall()
{

ListEntry *p=head;
while (p != 0) {

p->get_data().print();
p=p->get_next();

}
}



Main
Almost the same as in AddressBook, except for the type of
the variable abook, and the includes.

main2.cpp

#include "list.hpp"

using namespace std;

AddressList abook;

main2.cpp

bool quit = false;
while (!quit) {

cout << "Insert Name to search: ";
cin >> s;
if (strcmp(s, "quit") == 0) break;
else {

Entry e = abook.search(s);
cout << "Result: " << endl;
e.print();

}
}



Problems with lists

One of the problems with the list is that searching is a O(n)
operation

while the previous algorithm on the array was O(log(n))

The list is useful if we frequently insert and extract from the
head

For example, inside an operating system, the list of
processes (executing programs) may be implemented as a
list ordered by process priority
In general, when most of the operations are
inserting/estracting from the headm the list is the simplest
and most effective solution



Data structures so far

Stack
Insertion/extraction only at/from the top (LIFO)
All operations are O(1)

Queue (Circular Array)
Insertion at tail, extraction from head (FIFO)
All operations are O(1)

Array (random access)
Insertion at any point requires O(n)
Extraction from any point requires O(n)
Sorting requires O(n log(n))
Searching (in sorted array) requires O(log(n))

List (ordered)
Insertion at any point requires O(n)
Extraction from any point requires O(1)
Searching requires O(n)



More powerful data structures

No data structure so far allows:
Insertion in O(log(n))
Searching in O(log(n))

It is important to implement efficienlty such data structures,
because in most application you exactly need to seach the
data structure very efficiently, and insert/remove efficiently

On such data structure is the balanced binary tree



Outline

1 Searching

2 Lists

3 Balanced Binary Trees

4 AVL tree

5 Heap



Trees

A tree is a data structure where each element can have
two children

The parent element can be the child of another higher level
element

The topmost element is called root

8

5

9 12

10

2 6



Recursion

The tree is a recursive data structure
The root node has two subtrees, one on the left and one on
the right
Each node can be seen has root of its own subtree

Recursive definition : a tree can be
empty (i.e. contains no nodes)
consisting of one root node, plus one left tree and one right
tree

The tree is defined by itself!



Searching in a tree

Given a node that contains element k , the main idea is:
to put all elements that are less than k to the left
to put all elements that are greater than k to the right

If the tree is balanced (i.e. it has approximately the same
number of nodes in the left and in the right subtrees),
searching takes O(log(n))
Also, insertion takes O(log(n))

However, inserting elements make the tree unbalanced



Example of tree

In the following figure we have a tree of integers



Tree interface

Here is an example of class that implements a simple tree

simpletree.hpp

class AddressTree {
public:

AddressTree();
void insert(Entry e);
Entry search(char *s);
void print_all();
void print_structure();

private:
TreeEntry *root;

TreeEntry * _insert(TreeEntry *r, Entry e);
Entry _search(TreeEntry *r, char *s);
int _get_level(TreeEntry *r);
void _print_all(TreeEntry *r);
void _print_level(TreeEntry *r, int l, int n);

};



Tree implementation - 1

The functions insert and search call the internal recursive
versions

simpletree.cpp

AddressTree::AddressTree() : root(0)
{}

void AddressTree::insert(Entry e)
{

root = _insert(root, e);
}

Entry AddressTree::search(char *s)
{

return _search(root, s);
}



Tree searching

Simply looks in the current node, in the left one or in the
right one

simpletree.cpp

Entry AddressTree::_search(TreeEntry *r, char *s)
{

Entry null_entry;
if (r == 0) return null_entry;
else if (strcmp(r->get_data().get_name(), s) == 0)

return r->get_data();
else if (strcmp(r->get_data().get_name(), s) < 0)

return _search(r->get_left(), s);
else if (strcmp(r->get_data().get_name(), s) > 0)

return _search(r->get_right(), s);
else return null_entry;

}



Tree insertion

Interts to the right or to the left, depending on the ordering

simpletree.cpp

TreeEntry *AddressTree::_insert(TreeEntry *r, Entry e)
{

if (r == 0)
r = new TreeEntry(e);

else if (strcmp(r->get_data().get_name(), e.get_name()) < 0)
r->link_left(_insert(r->get_left(), e));

else if (strcmp(r->get_data().get_name(), e.get_name()) > 0)
r->link_right(_insert(r->get_right(), e));

else if (strcmp(r->get_data().get_name(), e.get_name()) == 0)
cout << "Element already present" << endl;

return r;
}



The main

The same as before

maintree.cpp

AddressTree abook;

int main(int argc, char *argv[])
{

if (argc < 2) {
cout << "Usage: " << argv[0] << " <filename> " << endl;
exit(-1);

}
ifstream f(argv[1]);
char s[50]; char a[100]; char t[20];

while (!f.eof()) {
f >> s;
if (f.eof()) break;
f.getline(a, 99);
f.getline(t, 19);
Entry e(s, a, t);
abook.insert(e);

}
abook.print_all();

abook.print_structure();

bool quit = false;



Balance

Unfortunately, the tree is not balances
(see output of maintree on example2.txt)

This means that the insertion and search operation do not
necessarily take O(log(n))

It is necessary to constantly keep the tree balanced to
achieve good performance



Outline

1 Searching

2 Lists

3 Balanced Binary Trees

4 AVL tree

5 Heap



Height

The height of a tree is how may pointers I have to follow in
the worst case before reaching a leaves
It can be defined recursively;

The height of an empty tree is 0
The height of a tree is equal to the maximum between the
heights of the left and right subtrees plus 1

Example: what is the height of this subtree?



Balance

The difference between the height of the left subtree and
the height of the right subtree is called balance.
A tree is said to be balanced if

the balance is -1, 0 or 1
Both the left and the right subtrees are balanced

(again a recursive definition!)

Is the tree in the previous slide balanced?

What is the balance of the tree obtained by example2.txt?



Rotation

When we insert a new element, the tree can become
unbalanced

Therefore, we have to re-balance it

The operation that we use to balance the tree must
preserve the ordering!
The balance can be obtained by rotating a tree

A rotate operation charges the structure of the tree so that
the tree becomes balanced after the operation, and the
order is preserved

There are many different implementation of the rotation
operation, that produce different types of balanced tree

Red-black trees
AVL trees
etc.

We will analyze the AVL tree



Left-left rotation

Suppose the tree with root X is unbalanced to the left (i.e.
balance = −2)

In this case, the height of the left subtree (with root Y) is
larger than the height of the right subtree by 2 levels

Also, suppose that the left subtree of Y (which has root Z)
is higher than its right subtree

We apply a left rotation:

W

Y

X

Z

X

Y

Z

W



Left-left rotation

What happened?
Before the rotation,

suppose that the right
subtree of X had
height h,
Y had height h + 2
Z had height h + 1
W had height h

W

Y

X

Z

X

Y

Z

W

After the rotation, Y is the new root

X has height h + 1,
Z has height h + 1

Also, notice that the order is preserved:
Before the rotation, Z < Y < W < X
After the rotation, Z < Y < W < X



Left-right

A different case is when the left subtree has balance +1

In such a case we need to perform a left-right rotation

Before the rotation,
suppose that the right
subtree of X had height
h,
Y had height h + 2
Z had height h + 1
W had height h

Y

X

X

W

Z

T

W T

Y

Z

After the rotation, Y is the new root
X has height h + 1,
Z has height h + 1

The order is still preserved



Rotations

There are 4 possible rotations
left-left : when the tree is unbalanced to the left and the left
subtree has balance -1
left-right : when the tree is unbalanced to the left, and the
left subtree has balance +1
right-left : when the tree is unbalanced to the right, and the
right subtree has balance -1
right-left : when the tree is unbalanced to the right, and the
right subtree has balance +1



Rotations

W

Y

X

Z

X

Y

Z

W

Figure: left-left

Y

X

X

W

Z

T

W T

Y

Z

Figure: left-right

Y

W

Y

X

W

Z

ZX

Figure: right-right

W T

Z

Y

X

Z

W T

X Y

Figure: right-left



Implementation

Now we look at the implementation

avltree.hpp

class AddressTree {
public:

AddressTree();
void insert(Entry e);
Entry search(char *s);
void print_all();
void print_structure();

private:
TreeEntry *root;

TreeEntry * _insert(TreeEntry *r, Entry e);
Entry _search(TreeEntry *r, char *s);
int _get_level(TreeEntry *r);
void _print_all(TreeEntry *r);
void _print_level(TreeEntry *r, int l, int n);

TreeEntry * _rotate_ll(TreeEntry *r);
TreeEntry * _rotate_lr(TreeEntry *r);
TreeEntry * _rotate_rl(TreeEntry *r);
TreeEntry * _rotate_rr(TreeEntry *r);

};



Rotations (right)

avltree.cpp

TreeEntry * AddressTree::_rotate_rr(TreeEntry *x)
{

TreeEntry *y = x->get_right();

x->link_right(y->get_left());
y->link_left(x);

return y;
}

TreeEntry * AddressTree::_rotate_rl(TreeEntry *x)
{

TreeEntry *y = x->get_right();
TreeEntry *z = y->get_left();

x->link_right(z->get_left());
y->link_left(z->get_right());
z->link_left(x);
z->link_right(y);

return z;
}



Rotations (left)

avltree.cpp

TreeEntry * AddressTree::_rotate_ll(TreeEntry *x)
{

TreeEntry *y = x->get_left();

x->link_left(y->get_right());
y->link_right(x);

return y;
}

TreeEntry * AddressTree::_rotate_lr(TreeEntry *x)
{

TreeEntry *y = x->get_left();
TreeEntry *z = y->get_right();

x->link_left(z->get_right());
y->link_right(z->get_left());
z->link_right(x);
z->link_left(y);

return z;
}



Height

The following function returns the tree level:

avltree.cpp

int AddressTree::_get_level(TreeEntry *r)
{

if (r == 0) return 0;
else return (1 + max(_get_level(r->get_left()),

_get_level(r->get_right())));
}

The search remains the same

Now we look at the insert



Insertion to the left
avltree.cpp

TreeEntry *AddressTree::_insert(TreeEntry *r, Entry e)
{

if (r == 0)
r = new TreeEntry(e);

else if (strcmp(r->get_data().get_name(), e.get_name()) < 0) {
// insert
r->link_left(_insert(r->get_left(), e));

// check balance since I inserted to the left, it can be
// balanced, or in LL or in LR
int ll = _get_level(r->get_left());
int rl = _get_level(r->get_right());
if (ll > (rl + 1)) {

int lll = _get_level(r->get_left()->get_left());
int lrl = _get_level(r->get_left()->get_right());

if (lll > lrl)
r = _rotate_ll(r);

else r = _rotate_lr(r);
}

}



Insertion to the right

avltree.cpp

else if (strcmp(r->get_data().get_name(), e.get_name()) > 0) {
r->link_right(_insert(r->get_right(), e));

int ll = _get_level(r->get_left());
int rl = _get_level(r->get_right());
if (rl > (ll + 1)) {

int rrl = _get_level(r->get_right()->get_right());
int rll = _get_level(r->get_right()->get_left());
if (rrl > rll) r = _rotate_rr(r);
else r = _rotate_rl(r);

}
}
else if (strcmp(r->get_data().get_name(), e.get_name()) == 0)

cout << "Element already present" << endl;

return r;
}



A complete example

A complete example can be found in program
examples/maintree.cpp

Exercise: modify the code to change the order in which
the elements are stored
Exercise: Modify the code so that:

1 All elements are stored in an array (i.e. a AddressBook
data structure), and only the pointers to the data elements
are stored in the tree

2 Write a different kind of tree that sorts elements by address.
3 In this way, you will have the same data structure ordered

by name and by address at the same time



Outline

1 Searching

2 Lists

3 Balanced Binary Trees

4 AVL tree

5 Heap



Heap
An heap is a data structure that is used mainly for
implementing priority queues
A heap is a binary tree in which, for each node A, the value
stored in the node is always greater than the values stored
in the childen
The data structure is also called max-heap (or min-heap if
we require that the node be less than its children)

Figure: Example of max-heap



Properties

Another property of max-heap is the fact that the heap is
“full” in all its levels except maybe the last one

Also, on the last level, all nodes are present from left to
rightm without holes

Figure: All nodes are full from left to right



Operations

The most important operations you can do on a heap are:
Insert an element in a ordered fashion
Read the top element
Extract the top element

An heap is used mainly for sorted data structures in which
you need to quickly know the maximum element



Insertion

To insert an element, we proceed in two steps
First the element is inserted in the first free position in the
tree
Then, by using a procedure called heapify, the node is
moved to its correct position by swapping elements

Suppose we want to insert element 15 in the heap below

Step 1 Step 2 Step 3



Deleting

For deleting an element, we proceed in a similar way
We first remove the top most element, and we substitute it
with the last element in the heap
Then, we move down the element to its correct position by
a sequence of swaps

Suppose that we remove the top element in the heap
below. We substitute it with the last element (4)

Step 1 Step 2



Heap implementation

The heap can be efficiently implemented with an array

The root node is stored at index 0 of the array
Given a node at index i :

its left child can be stored at 2i + 1
its right child can be stored at 2i + 2

the parent of node j is at
⌊

j−1
2

⌋

Figure: Efficently storing a heap in an array


	Searching
	Lists
	Balanced Binary Trees
	AVL tree
	Heap

