
Introduction to the C programming language
Dynamic memory

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

February 11, 2010

Outline

1 Memory classification

2 Heap memory

3 Memory leak

4 Dynamic objects

http://retis.sssup.it/~lipari

Global, stack, heap

All memory in a C/C++ program can be divided into 3
types:

Global static memory: this memory contains all code and
all global variables. It is created by the system when the
program starts executing, and it is destroyed when the
program terminates. Therefore, it is static, i.e. it never
change its size
Stack memory: this memory contains all local variables of
any function. The memory for a local variable is dynamically
created when the function is called, and it is destroyed (i.e.
it is not available anymore) when the function returns.
Heap memory: this memory is created by the programmer
by calling an appropriate function (malloc()), and it is
released by calling another function (free). It is the user
that manages this mamoery, so he must be careful in not
making errors.

Examples
dynmemory/distance.cpp

struct point2D {
double x, y;
int z;

};
int a;
char name[10];
double vect[5];
point2D x1, x2;

double distance(point2D *p1, point2D *p2)
{

return sqrt(pow((p1->x - p2->x),2) + pow((p1->y - p2->y),2));
}

int main()
{
double dist;

x1.x = 0; x1.y = 0;
x2.x = 2; x2.y = 2;
cout << "distance: " << distance(&x1, &x2) << endl;

}

Pointers and dynamic memory

We must be careful when using pointers with dynamically
allocated memory

A pointer is just variable that stores an address, i.e. a
number. However, there is no assumption on what the
address contains.

In particular, nobody guarantees that the pointer always
points to a valid location throught the life of the program.

This can be the source of many subtle errors.

Example

Where is the mistake in the following code? dynmemory/stackerror.cpp

char *get_substring(char *str)
{

char sub[100];
int i = 0;

while (str[i] != ’ ’ && str[i] != 0)
sub[i] = str[i++];

sub[i] = 0;
return sub;

}

int main()
{

char name[100] = "Giuseppe Lipari";
char *p = get_substring(name);

cout << "substring: " << p << endl;

What happened?

In the previous example, sub is a local variable
therefore, the memory for the array is stack memory; it is
created (allocated) when the function is called, and it is
destroyed (deallocated) when the function finished

Function get_substring returns the address of a local
variable

This address is not valid when the function terminates
Therefore, p contains an invalid address
The address is likely to be reused by the program at the
next function call (the following cout to pring on the
terminal), and the memory is overwritten by other local
variables.
Recent compilers raise a warning to the programmer: this
is surely an error!

Heap memory

To solve the previous error, we need to store the results of
function get_substring in a set of memory location that is
not deallocated after the function has terminated

We could use some static memory (i.e. global variables)
However, this is not very flexible, because it requires to
know a-priori the amount of memory that is needed

How many times we will call the function?
How long can a substring be?

The C/C++ standard library (cstdlib) provides functions to
precisely allocate/deallocate memory

Malloc

In C, the standard library provides functions malloc() and
free ()

#include <cstdlib>

void *malloc(size_t s);
void free(void *p);

The malloc() takes an integer parameters to specify the
amount of bytes to allocate, and returns the address of the
allocated memory block. From now on, the memory block
is available for use until the corresponding free is called

The free () takes a pointer to a previously allocated
memory block and releases it. After the call, the address is
not valid anymore.

malloc

Notice that the malloc() returns a pointer to void. This is
because the programmer that wrote this function and
included it in the library did not know what the caller will
want to do with the memory

Thus, the programmer must cast the result of the malloc to
the correct pointer type.

Solution to the previous example

dynmemory/stackcorrect.cpp

char *get_substring(char *str)
{

char *sub;
int i = 0;

while (str[i] != ’ ’ && str[i] != 0) i++;
sub = (char *)malloc((i+1)*sizeof(char)); // allocate mem
strncpy(sub, str, i); // copies i chars from str to sub
return sub;

}

int main()
{

char name[100] = "Giuseppe Lipari";
char *p = get_substring(name);

cout << "substring: " << p << endl;
free(p);

}

Comments

The programmer can allocate exactly the right amount of
memory:

In the previous example, the programmer allocated exactly
i+1 bytes for the string

However, the programmer must deal with this memory in
the program

The stack memory is managed by the run-time system of
the computer; it is automatically allocated when the function
is called, and automatically deallocated when the function
finishes
for this reason, local variables are also called automatic
variables
heap memory, instead, must be managed by the
programmer
heap memory management and pointers are the source of
more than 90% of program bugs.

Memory leak
One important thing to remember is to store the address of
the allocated memory, so that we can later free it

dynmemory/leak.cpp

// function to swap the contents of two strings
void str_swap(char *p, char *q)
{

char *tmp_p = (char *)malloc(strlen(p)+1);
strcpy(tmp_p, p);
strcpy(p, q);
strcpy(q, tmp_p);
return;

}

int main()
{

char name[10] = "Giuseppe";
char surn[10] = "Lipari";

str_swap(name, surn);
cout << name << " " << surn << endl;
str_swap(name, surn);
cout << name << " " << surn << endl;

}

Problem

In the previous example, the problem is that after the
function str_swap() returns, the address of the allocated
memory is lost (it was stored in a local variable), so we
cannot free the memory anymore

Every time we call the str_swap() function, the total amount
of allocate memory increases

If the program is expected to run forever (for example a
web server), at some point the computer memory will be
over!

What happens is that you will see the program slow down
a lot, until it crashes with an out of memory message

This bug is called memory leak

Another example

In the following example, we lose the reference to a
memory block

int *p = (int *)malloc(10);
p[0] = 0;
for (i=1; i<10; i++) p[i] = p[i-1] + i;
...
p = (int *)malloc(20);
// we have lost reference to the previous memory block!

The Java language has a feature called garbage collector
that looks around for memory blocks that are not
referenced by any pointer, and delete them.

Garbage collection is an heavy task, so many languages
like C/C++ do not have such a feature

Dynamic sizes

As discussed before, one of the advantages of using heap
memory is that we can use exactly as much memory as it
is needed

Consider a program for representing 2D polygons
each polygon is represented by its vertexes in clockwise
order
each vertex is represented by a struct point2D structure
therefore, the polygon can be represented by an array of
vertexes

Polygons can have any number of vertexes
If we only use static or automatic variables, we must
allocate the memory at compilation time
therefore, our only choice is to decide a-priori the maximum
size of the array (i.e. a maximum of vertexes) and the
maximum number of polygons

Dynamic memory handling

A first improvement consists in deciding dynamically the
size of the array

In the following program, we start writing a complete
example of handling of 2D polygons

First we write the prototype functions in a heaer file poly.h

The implementation of such functions goes in a file called
poly.cpp

Finally, the usage goes in a file called main.cpp

	Memory classification
	Heap memory
	Memory leak
	Dynamic objects

