
Introduction to the C programming language

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

January 19, 2010

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

http://retis.sssup.it/~lipari

My first C program

Let’s start with a classic:

hello/hello.c

#include <stdio.h>
int main()
{

printf("Hello world!\n");
return 0;

}

include includes definitions for library functions (in this
case, the printf() function is defined in header
file stdio.h)

main function this function must always be present in a C
program. It is the first function to be invoked (the
entry point)

return end of the function, returns a value to the shell

How to compile and run the program

The C language is a compiled language
It means that the above program must be translated into a
binary code before being executed

The compiler does the job
reads the source file, translates it into binary code, and
produces an executable file
In Linux, the following command line produces executable
file hello from source file hello.c

gcc hello.c -o hello

In Windows (with DevC++), you must build the program

When you run the program (from a Linux shell, type
./hello, from Windows, click on Run), you obtain:

(in Windows you may not be able to see the output because
the shell is automatically closed!)

Hello world!

Compiling the code

The translation from high-level language to binary is done
by the compiler (and the linker)

the compiler translates the code you wrote in the source
file (hello.c)
the linker links external code from libraries of existing
functions (in our case, the printf() function for output on
screen)

compile &

link
executable

std library

(printf)

hello.c

gcc hello.c −o hello hello

Figure: Compiling a file

Multiple source files

A program can consist of multiple source files

Every source file is called module and usually consists of a
set of well-defined functions that work together

every source file is compiled separately (it is a compilation
unit) to produce an object file (extension: .o or .obj)

all objects files and libraries are then linked together to
produce an executable

We will see later how it works

Running a program

To execute a program, you must tell the Operating System
to

load the program in main memory (RAM)
start executing the program instructions sequentially

The OS is itself a program!
It is a high-order program that controls the execution of user
programs

The OS can:
Execute several user programs concurrently or in parallel
suspend or kill a user program
coordinate and synchronize user programs
let them communicate and exchange data
and many other things!

Declarations, functions, expressions

A C program is a sequence of global declarations and
definitions

declarations of global variables and functions
definitions of variables and functions
often, declarations are implicit (the definition is an implicit
declaration)
Examples:

int a; // declaration + definition
int b = 10; // declaration + definition + init

int f(int); // declaration only

int f(int p) // definition
{

...
}

int g() // declaration + definition
{

}

Functions

The code goes inside functions
There must be always at least one definition of a function
called main

In the hello example:

hello/hello.c

{
printf("Hello world!\n");
return 0;

}

anatomy of the main function
There can be another form of main function:

int main(int argc, char *argv)
{

...
}

main is the function name, and must be unique in a
program

there cannot be two functions with the same name

int is the return type (will see later)
between () parenthesis we have the list of parameters with
their type, separated by commas:

in the example above, two parameters, argc and argv

between {} parenthesis, we have the function body:
the code that is executed when the function is called

The OS implicitly calls the main function when the program
is launched

the main function is also called the program entry point

Variables and types

A variable is a location in memory with a symbolic name

A variable is used as temporary or permanent storage of
data to perform complex computation

In C, every variable must have a type

Predefined types in C:
int an integer number (usually 32 bits)

char a ASCII character (8 bits)
float floating point number, single precision (32

bits)
double floating point number, double precision (64

bits)

A type dictates the variable range (or domain) (from the
number of bits) and the operations you can perform on a
variable

Variable definition

Usually, declaration and definition coincide for variables

The definition consists of the type keyword followed by the
name of the variable, followed by the “;” symbol

Examples
int a; /* an integer variable of name a */
double b; /* a double-precision floating point */
char c; /* a character */
...

a = 10; /* assignment: a now contains 10 */
b = b + 1.5; /* after assignment, b is equal to

the previous value of b plus 1.5 */
c = ’a’; /* c is equal to the ASCII value of

character ’a’ */

Constants

Constants are numeric or alphabetic values that can be
used in operations on variables or in functions

Example:
const double pi = 3.1415; /* a double precision constant */

int a = 325; /* 325 is a constant integer */
...
char c = ’?’; /* ’?’ is a constant character */

printf("Hello world!\n"); /* "Hello world!\n" is a constant string */

Variable names

Variable names cannot start with a number

cannot contain spaces

cannot contain special symbols like ’+’, ’-’, ’*’, ’/’, ’%’, etc.

cannot be arbitrarily long (255 char max)

cannot be equal to reserved keywords (like int, double,
for, etc.)

Variable initialization

It is possible to assign an initial value to a variable during
definition

If you do not specify a value, the initial value of the variable
is undefined
It is good programming practice to always initialize a
variable

Many programming errors are due to programmers that
forget to initialize a variable before using it

int a = 0; /* the initial value is 0 */
int i; /* undefined initial value */
int b = 4;

b = i + 5; /* error! the value of b is not defined! */

Operations on variables

The basic arithmetic operators are:
+ addition
- subtraction
* multiplication
/ division

% modulus (remainder of the integer division)
Notes:

when division is applied to integers, the result is an integer
(it truncates the decimal part)
modulus can only be applied to integers
multiplication, division and modulus have precedence over
addition and subtraction
to change precedence, you can use parenthesis

Expressions

A C program is a sequence of expressions

An expression is a combination of operators on variables,
constants and functions

Examples of expressions:

/* definitions of variables */
int a, b;
int division;
int remainder;

double area_circle;
double radius;

...

/* expressions */
a = 15;
b = 6;
division = a / b;
remainder = a % b;

radius = 2.4;
area_circle = 3.14 * radius * radius;

Assignment and expressions

Assigning a value to a variable is itself an expression

area_circle = 3.14 * radius * radius;

The above expression is composed by three elements:
the operator is =
the left operand must always be a variable name (cannot be
another expression!)
the right operand can be any expression, (in our case a
double multiplication)
the right operand is evaluated first, and then the result is
assigned to the left operand (the variable)

area_circle / 3.14 = radius * radius

the code above is illegal!

Assignment expressions

The following expression is perfectly legal:
int a, b;

b = a = 5;

You must read it from right to left:
a=5 is first evaluated by assigning value 5 to variable a; the
result of this expression is 5
then, the result is assigned to variable b (whose value after
assignment is hence 5)

What is the value of b after the following two expressions?
int a, b;

b = (a = 5) + 1;

b = a = 5 + 1;

Formatted output

To output on screen, you can use the printf library
function

printf/exprintf.c

/* fprintf example */
#include <stdio.h>

int main()
{

printf ("Characters: %c %c \n", ’a’, 65);
printf ("Decimals: %d %ld\n", 1977, 650000);
printf ("Preceding with blanks: %10d \n", 1977);
printf ("Preceding with zeros: %010d \n", 1977);
printf ("Some different radixes: %d %x %o %#x %#o \n", 100, 100, 100, 100, 100);
printf ("floats: %4.2f %+.0e %E \n", 3.1416, 3.1416, 3.1416);
printf ("Width trick: %*d \n", 5, 10);
printf ("%s \n", "A string");
return 0;

}

Formatted Input

To input variables from the keyboard, you can use the
scanf library function

printf/exscanf.c

/* scanf example */
#include <stdio.h>

int main ()
{
char str [80];
int i;

printf ("Enter your family name: ");
scanf ("%s",str);
printf ("Enter your age: ");
scanf ("%d",&i);
printf ("Mr. %s , %d years old.\n",str,i);
printf ("Enter a hexadecimal number: ");
scanf ("%x",&i);
printf ("You have entered %#x (%d).\n",i,i);

return 0;
}

Exercises

1 Write a program that asks the user to enter the radius of a
circle, computes the area and the circumference

define variables and initialize them
use scanf to input radius variable
compute the values
formatted input on screen

2 Write a program that asks for two integer numbers a and b,
computes the quotient and the remainder, and prints them
on screen

Shortcuts

It is possible to combine assignment with common
operators, as follows:

a += 5; // equivalent to a = a + 5;

x /= 2; // equivalent to x = x / 2;

y *= x + a; // equivalent to y = y * (x+a);

In general
var <op>= <expr>; // equivalent to var = var <op> (<expr>);

Increment / decrement

If you just need to increment/decrement, you can use the
following shortcuts

x++; // equivalent to x = x + 1;
++x; // equivalent to x = x + 1;

y--; // equivalent to y = y - 1;
--y; // equivalent to y = y - 1;

Of course, it can only be used on variables;
(a+b)++; // compiler error! cannot increment an expression

x = (a+b)++; // error again: use x = (a+b)+1;

Pre and post-increment

What is the difference between x++ and ++x?

They are both expressions that can be used inside other
expressions (like assignment), as follows;

int a, x;
x = 5;

a = ++x; // what is the value of a after the assignment?

The only difference is the value of the expression:
x++ has the value of x before the increment;
++x has the value of x after the increment;

x = 5;
a = x++; // value of a is 5, b is 6

x = 5;
a = ++x; // value of a is 6, b is 6

Boolean operators

In there is no boolean type

Every expression with a value equal to 0 is interpreted as
false

Every expression with a value different from 0 is
interpreted as true

It is possible to use the following boolean operators:
&& logical and operator

|| logical or operator
! logical not operator

It is possible to interpret integer values as booleans and
vice versa

int a, b, c;
a = 0; b = 5;

c = a && b; // after assignment, c is 0;
c = a || b; // after assignment, c is 1;
c = !b; // after assignment, c is 0;

Comparison operators

These operators compare numbers, giving 0 or 1 (hence a
boolean value) as result

< less than
<= less than or equal to

> greater than
>= greater than or equal to
== equal

!= not equal

int a = 7; int b = 10; int c = 7;

int res;

res = a < b; // res is 1
res = a <= c; // res is 1
res = a < c; // res is 0

res = b == c; // res is 0

(will come back to these later)

Binary operators

It is possible to do binary operations on integer variables
using the following operators:

& binary (bit-to-bit) and
| binary (bit-to-bit) or

∼ binary (bit-to-bit) not (complement)

unsigned char a = 1; // in binary: 0000 0001
unsigned char b = 2; // in binary: 0000 0010
unsigned char c = 5; // in binary: 0000 0101
unsigned char d;

d = a & b; // d is now 0000 0000
d = a & c; // d is now 0000 0001
d = a | b; // d is now 0000 0011
d = ~a; // d is now 1111 1110

Execution flow

Usually, instructions are executed sequentially, one after
the other, until the end of the function

However, in many cases we must execute alternative
instructions, depending on the value of certain expressions

Also, sometimes we need to repeat instructions a number
of times, or until a certain condition is verified

we need to control the execution flow

If statement

To select alternative paths, we can use the if then else
statement

The general form is the following:

if (<expression>)
statement;

<expression> must be a boolean expression;

The statement can be a single code instruction, or a block
of code:

if (<expression>) {
statement1;
statement2;
statement3;

}

A block is a set of statements encloses by curly braces {}

Examples

here are two example of usage of if

int x;
...
if (x % 2)

printf("number %d is even\n", x);

double a;

if (a < 0) {
printf("a is negative!\n");
a = -a;
printf("a is now positive\n");

}

Complete form

In its most complete form:

if (<expression>)
statement1;

else
statement2;

Of course, both statement1 and statement2 can be
blocks of statements;
if (x > 0) {

if (y > 0)
printf("Northeast.\n");

else
printf("Southeast.\n");

}
else {

if (y > 0)
printf("Northwest.\n");

else
printf("Southwest.\n");

}

Statements

A statement can be:
an expression;
a if then else construct;
a block of statements (recursive definition!)

Expressions and statements are not the same thing!
You can use expressions wherever you can use a statement
You cannot use a statement where you see "expression"!

For example, you cannot use a statement inside a if
condition!

But you can use another if as a statement

You can write the following:
if (x > 0) if (y > 0) printf("north east\n");

else printf("south east\n");
else if (y > 0) printf("north west\n");

else printf("south west\n");

here if is used as a statement inside another if

You cannot write the following:
if (if (x > 0)) ...

in facts, an if condition can only be an expression!
Remember:

An expression has always a (numerical) value which is the
result of an operation
0 is interpreted as false, any other number is interpreted as
true
A statement may be an expression (in which case it has a
numerical value), or something else

More on if conditions

To check if variable i is between 1 and 10:
if (i <= 10 && i>= 1) ...

or alternatively:
if (1 <= i && i <= 10) ...

Don’t use the following:
if (1 <= i <= 10) ...

(what happens? check out conditions/condition1.c)

Common mistakes

One common mistake is the following:

int a = 5;
if (a = 0) printf("a is 0\n");
else printf("a is different from 0\n");

What does the code above print on screen? (see
conditions/condition2.c)

The value of expression a = 0 (which is an assignment,
not a comparison!) is 0, i.e. the value of a after the
assignment

Probably, the programmer wanted to say something else:

if (a == 0) printf("a is 0\n");
else printf("a is different from 0\n");

Loops

In many cases, we need to execute the same code many
times, each time on a different set of values
Example:

Given an integer number stored in variable a, print “number
is prime” if the number is prime (divisible only by 1 and by
itself)
To solve the problem, we need to check the remainder of
the division between a and all numbers less than a. If it is
always different from 0, then the number is prime
However, we do not know the value of a before program
execution; how many division should we do?

Solution: use the while construct

While loop

The general form:

while (<expression>) statement;

As usual, statement can also be a block of statements

Similar to an if, but the statement is performed iteratively
while the condition is “true” (i.e. different from 0)

Example: sum the first 10 numbers:
int sum = 0;
int i = 0;

while (i < 10) {
sum = sum + i;
i = i + 1;

}

printf("The sum of the first 10 numbers: %d\n", sum);

Break and continue statements

Sometimes we need to go out of the loop immediately,
without completing the rest of the statements. To do this
we can use the break statement
int i = 0;
while (i < 10) {

i++;
if ((i % 5) == 0) break;
printf("%d is not divisible by 5\n", i);

}
printf("Out of the loop");

Another possibility is to continue with the next iteration
without complete the rest of the statements:
int i = 0;
while (i < 10) {

i++;
if (i % 5) continue;
printf("%d is not divisible by 5\n", i);

}
printf("Out of the loop\n");

Prime numbers

primes/isprime.c

#include <stdio.h>

int main()
{

int k, i, flag;

printf("This program tests if a number is prime\n");
printf("Insert a number: ");

scanf("%d", &k);

flag = 1;
i = 2;

while (i < k) {
if (k % i == 0) {

printf("%d is a divisor: %d = %d x %d\n", i, k, i, k/i);
flag = 0;
break;

}
i++;

}
printf("%d is ", k);
if (!flag) printf("not ");
printf("prime\n");

}

Loops

if then else and while constructs are all we need to
program

It can be proved in theoretical computer science that with
one loop construct and one selection construct, the
language is equivalent to a Turing Machine, the simplest
and more general kind of calculator

However, sometimes using only while loops can be
annoying

The C language provides two more loop constructs: for
loops and do-while loops

For loop

The most general form is the following:

for(<expr1>; <expr2>; <expr3>) statement;

expr1 is also called initialization; it is executed before
entering the first loop iteration
expr2 is also called condition; it is checked before every
iteration;

if it is false, the loop is terminated;
if it is true, the iteration is performed

expr3 is also called instruction; it is performed at the end
of every iteration

The most common usage is the following:
for (i=0; i<10; i++)

printf("The value of i is now %d\n", i);

Sum the first 10 numbers

int n = 10;
int i;
int sum = 0;

for (i=0; i<n; i++) sum += i;

printf("The sum of the first %d numbers is %d\n", n, sum);

Prime numbers

primes/isprime2.c

#include <stdio.h>

int main()
{

int k, i, flag;

printf("This program tests if a number is prime\n");
printf("Insert a number: ");

scanf("%d", &k);

flag = 1;

for (i=0; i<k/2; i++)
if (k % i == 0) {

printf("%d is a divisor: %d = %d x %d\n", i, k, i, k/i);
flag = 0;
break;

}

printf("%d is ", k);
if (!flag) printf("not ");
printf("prime\n");

}

Equivalence between for and while

We can always rewrite any while loop as a for loop, and
vice versa

for (expr1; expr2; expr3) statement;

can be rewritten as:

expr1;
while (expr2) {

statement;
expr3;

}

On the other hand, the following while loop;

while (expr) statement;

can be rewritten as:

for(; expr ;) statement;

Exercises

1 Given the following for loop, rewrite it as a while loop;
int k, i=0; j=8;
for (k=0; k<j; k++) {

i = k+j;
j--;
printf("i is now %d\n", i);

}

2 Write a program that, given an integer number in input,
prints on screen all prime factors of the number,

For example, given 6, prints 2, 3
given 24, prints 2, 2, 3
given 150, prints 2, 3, 5, 5
etc.
Suggestion: use a while loop initially

Exercises: strange for loops

Since an expression can be pretty much everything, you can
write lot of strange things with for loops

1 Incrementing 2 variables with the comma operator:

int i, j;
for (i=0, j=0; i < 5; i++, j+=2)

printf(" i = %d, j = %d\n", i, j);

What does the code above print on screen?

2 What the code below prints on screen?
int i;
int g=0;
for (i=0; i<10; g += i++);
printf("%d", g);

	First steps
	Declarations and definitions
	Variables
	Simple Input/output
	First exercises
	Advanced operators

	Statements and control flow
	If then else
	While loop
	For loop
	Exercises

