Introduction to the C programming language

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

January 19, 2010

Outline

Q First steps

9 Declarations and definitions

e Variables
@ Simple Input/output
@ First exercises
@ Advanced operators

e Statements and control flow
@ If then else
@ While loop
@ For loop
@ Exercises

http://retis.sssup.it/~lipari

My first C program

@ Let’s start with a classic:

hello/hello.c

#i ncl ude <stdi o. h>

int main()

{
printf("Hello world!\n");
return O;

include includes definitions for library functions (in this
case, the pri ntf () function is defined in header

file stdio.h)

main function this function must always be presentina C
program. It is the first function to be invoked (the
entry point)

return end of the function, returns a value to the shell

How to compile and run the program

@ The C language is a compiled language
@ It means that the above program must be translated into a
binary code before being executed

@ The compiler does the job

o reads the source file, translates it into binary code, and
produces an executable file

@ In Linux, the following command line produces executable
file hello from source file hello.c

gcc hello.c -0 hello

@ In Windows (with DevC++), you must build the program

@ When you run the program (from a Linux shell, type
./ hel | o, from Windows, click on Run), you obtain:
@ (in Windows you may not be able to see the output because
the shell is automatically closed!)

Hell o worl d!

Compiling the code

@ The translation from high-level language to binary is done
by the compiler (and the linker)

o the compiler translates the code you wrote in the source
file (hello.c)

o the linker links external code from libraries of existing
functions (in our case, the pri nt f () function for output on

screen)
gcc hello.c —o hello hello
compile &
. executable
link
std library

(printf)

Figure: Compiling a file

Multiple source files

@ A program can consist of multiple source files

@ Every source file is called module and usually consists of a
set of well-defined functions that work together

@ every source file is compiled separately (it is a compilation
unit) to produce an object file (extension: .o or .obj)

@ all objects files and libraries are then linked together to
produce an executable

@ We will see later how it works

Running a program

@ To execute a program, you must tell the Operating System
to

@ load the program in main memory (RAM)
@ start executing the program instructions sequentially

@ The OS is itself a program!

@ Itis a high-order program that controls the execution of user
programs

@ The OS can:

@ Execute several user programs concurrently or in parallel
suspend or kill a user program

coordinate and synchronize user programs

let them communicate and exchange data

o
o
o
@ and many other things!

Declarations, functions, expressions

@ A C program is a sequence of global declarations and
definitions

o declarations of global variables and functions

@ definitions of variables and functions

o often, declarations are implicit (the definition is an implicit
declaration)

@ Examples:
int a; /] declaration + definition
int b = 10; /] declaration + definition + init
int f(int); [/ declaration only
int f(int p) [/ definition

}

int g() /] declaration + definition

Functions

@ The code goes inside functions

@ There must be always at least one definition of a function
called mai n

@ In the hello example:

hello/hello.c

printf("Hello world!\n");
return O;

}

anatomy of the mai n function

@ There can be another form of main function:

{
}

int main(int argc, char xargv)

@ mai n is the function name, and must be unique in a
program
@ there cannot be two functions with the same name
@ i nt is the return type (will see later)

@ between () parenthesis we have the list of parameters with
their type, separated by commas:

@ in the example above, two parameters, ar gc and ar gv
@ between {} parenthesis, we have the function body:
@ the code that is executed when the function is called

@ The OS implicitly calls the mai n function when the program
is launched

@ the mai n function is also called the program entry point

Variables and types

@ A variable is a location in memory with a symbolic name

@ A variable is used as temporary or permanent storage of
data to perform complex computation

@ In C, every variable must have a type

@ Predefined types in C:

int an integer number (usually 32 bits)
char a ASCII character (8 bits)
float floating point number, single precision (32
bits)
double floating point number, double precision (64
bits)
@ A type dictates the variable range (or domain) (from the
number of bits) and the operations you can perform on a
variable

Variable definition

@ Usually, declaration and definition coincide for variables

@ The definition consists of the type keyword followed by the
name of the variable, followed by the “;” symbol

@ Examples
int a; [+ an integer variable of nanme a * [
doubl e b; [+ a doubl e-precision floating point */
char c; [+ a character */
a = 10; [+ assignment: a now contains 10 */
b=Db+ 1.5; [+ after assignment, b is equal to
the previous value of b plus 1.5 «/
c ='a; [+ ¢ is equal to the ASCII val ue of
character ’'a’ */

Constants

@ Constants are numeric or alphabetic values that can be
used in operations on variables or in functions

@ Example:
const double pi = 3.1415; /» a doubl e precision constant */
int a = 325; [+ 325 is a constant integer * [
;:.hér c ='7?7; /* *?" is a constant character * [
printf("Hello world!'\n"); [+ "Hello world!'\n" is a constant string */

Variable names

@ Variable names cannot start with a number

@ cannot contain spaces

@ cannot contain special symbols like '+’, -, '*', ', "%’, etc.
@ cannot be arbitrarily long (255 char max)

@ cannot be equal to reserved keywords (like i nt, doubl e,
for, etc.)

Variable initialization

@ It is possible to assign an initial value to a variable during
definition

@ If you do not specify a value, the initial value of the variable
is undefined

@ It is good programming practice to always initialize a
variable

@ Many programming errors are due to programmers that
forget to initialize a variable before using it

int a =0; /* the initial value is 0 */

int i; /* undefined initial value */

int b = 4;

b =i +5; /+ error! the value of b is not defined! =*/

Operations on variables

@ The basic arithmetic operators are:

+ addition
- Subtraction
* multiplication
/ division
% modulus (remainder of the integer division)
@ Notes:

@ when division is applied to integers, the result is an integer
(it truncates the decimal part)

@ modulus can only be applied to integers

@ multiplication, division and modulus have precedence over
addition and subtraction

@ to change precedence, you can use parenthesis

Expressions

@ A C program is a sequence of expressions

@ An expression is a combination of operators on variables,
constants and functions

@ Examples of expressions:

/+ definitions of variables */
int a, b;

int division;

i nt renmni nder;

doubl e area_circle;
doubl e radi us;

[* expressions */
a = 15;

b = 6;
division = a / b;
remai nder = a % b;

radi us = 2. 4;
area circle = 3.14 * radius * radius;

Assignment and expressions

@ Assigning a value to a variable is itself an expression

area circle = 3.14 * radius * radi us;

@ The above expression is composed by three elements:

o the operator is =

o the left operand must always be a variable name (cannot be
another expression!)

@ the right operand can be any expression, (in our case a
double multiplication)

@ the right operand is evaluated first, and then the result is
assigned to the left operand (the variable)

area_circle / 3.14 = radius * radius

@ the code above is illegal!

Assignment expressions

@ The following expression is perfectly legal:

int a, b;

b =a =25

@ You must read it from right to left:

@ a=5 is first evaluated by assigning value 5 to variable a; the
result of this expression is 5

@ then, the result is assigned to variable b (whose value after
assignment is hence 5)

@ What is the value of b after the following two expressions?

int a, b;

b= (a=5) +1;

b=a=5+1;

Formatted output

@ To output on screen, you can use the pri nt f library
function

printf/exprintf.c

[+ fprintf exanple x/
#i ncl ude <stdio. h>
int main()
{
printf ("Characters: % % \n", 'a’, 65);
printf ("Decimals: % % d\n", 1977, 650000);
printf ("Preceding with blanks: 9%40d \n", 1977);
printf ("Preceding with zeros: %910d \n", 1977);
printf ("Sone different radi xes: % % % %#x %o \n", 100, 100, 100, 100, 100);
printf ("floats: %. 2f %-.0e % \n", 3.1416, 3.1416, 3.1416);
printf ("Wdth trick: %d \n", 5, 10);
printf ("% \n", "A string");
return O;
}

Formatted Input

@ To input variables from the keyboard, you can use the
scanf library function

printf/exscanf.c

{

[+ scanf exanple */
#i ncl ude <stdio. h>

int main ()

char str [80];
int i;

printf ("Enter your famly nane: ");

scanf ("%",str);

printf ("Enter your age: ");

scanf ("%", &);

printf ("M. % , % years old.\n",str,i);
printf ("Enter a hexadeci mal nunber: ");
scanf ("%&", &);

printf ("You have entered %ix (%l).\n",i,i);

return O;

Exercises

@ Write a program that asks the user to enter the radius of a
circle, computes the area and the circumference

@ define variables and initialize them
@ use scanf to input radius variable
@ compute the values

o formatted input on screen

@ Write a program that asks for two integer numbers a and b,
computes the quotient and the remainder, and prints them
on screen

Shortcuts

@ It is possible to combine assignment with common
operators, as follows:

a += b5; /l equivalent to a = a + b5;

X /= 2; // equivalent to x = x /[2;

y *= X + a; // equivalent toy =y * (x+a);
@ In general

var <op>= <expr>; // equivalent to var = var <op> (<expr>);

Increment / decrement

@ If you just need to increment/decrement, you can use the
following shortcuts

X++; /] equivalent to x = x + 1
++X; /1 equivalent to x = x + 1
y--i /'l equivalent toy =y - 1
--ys /l equivalent toy =y - 1

@ Of course, it can only be used on variables;

(at+b) ++; [/ conpiler error! cannot increment an expression

X = (a+b) ++; /1 error again: use x = (atb)+1

Pre and post-increment

@ What is the difference between x++ and ++x?

@ They are both expressions that can be used inside other
expressions (like assignment), as follows;

int a, x;
X = 5;

a = ++xX; /1 what is the value of a after the assignment?

@ The only difference is the value of the expression:

@ X++ has the value of x before the increment;
@ ++Xx has the value of x after the increment;

X = b5;
a = X++; [/l value of ais 5 bis 6
X = b;
a = ++x; // value of ais 6, bis 6

Boolean operators

@ In there is no boolean type

@ Every expression with a value equal to O is interpreted as
false

@ Every expression with a value different from O is
interpreted as true

@ It is possible to use the following boolean operators:

&& logical and operator
|| logical or operator
I logical not operator

@ It is possible to interpret integer values as booleans and

Vice versa
int a, b, c;
a=0 b=25;
c = a & b; /] after assignment, c is O;
c =all| b; /1 after assignment, c is 1;
c = !b; /1 after assignment, c is O;

Comparison operators

@ These operators compare numbers, giving 0 or 1 (hence a
boolean value) as result

< less than
<= less than or equal to

> greater than
>= greater than or equal to
== equal

I= not equal

int a=7;, int b =10; int ¢ = 7;

int res;

res = a < b; /Il res is 1
res = a <= ¢; /Il res is 1
res = a < c; /[l res is O

res b == c; /Il res is O

@ (will come back to these later)

Binary operators

@ It is possible to do binary operations on integer variables
using the following operators:
& binary (bit-to-bit) and
| binary (bit-to-bit) or
~ binary (bit-to-bit) not (complement)

unsi gned char a = 1, /1 in binary: 0000 0001
unsi gned char b = 2; // in binary: 0000 0010
unsi gned char ¢ = 5; /1 in binary: 0000 0101
unsi gned char d;

d =a &b; /1 d is now 0000 0000
d = a &c; // d is now 0000 0001
d =a]| b; /! dis now 0000 0011
d = ~a; // dis now 1111 1110

Execution flow

@ Usually, instructions are executed sequentially, one after
the other, until the end of the function

@ However, in many cases we must execute alternative
instructions, depending on the value of certain expressions

@ Also, sometimes we need to repeat instructions a number
of times, or until a certain condition is verified

@ we need to control the execution flow

If statement

@ To select alternative paths, we can use the if then else
statement

@ The general form is the following:

i f (<expression>)
st at ement ;

@ <expressi on> must be a boolean expression;

@ The statement can be a single code instruction, or a block
of code:

i f (<expression>) {
st at enent 1;
st at erment 2;
st at enent 3;

}

@ A block is a set of statements encloses by curly braces {}

Examples

@ here are two example of usage of if

int x;

if (x %2)
printf("nunmber % is even\n", Xx);

doubl e a;

if (a<0) {
printf("a is negative!\n");
a = -a;
printf("a is now positive\n");

Complete form

@ In its most complete form:

i f (<expression>)
st at ement 1;

el se
st at ement 2;

@ Of course, both st at enent 1 and st at enent 2 can be
blocks of statements;

if (x >0 {
if (y >0)
printf("Northeast.\n");
el se
printf("Southeast.\n");
}
el se {
if (y >0)
printf("Northwest.\n");
el se
printf("Southwest.\n");

Statements

@ A statement can be;

@ an expression;
o a if then else construct;
@ a block of statements (recursive definition!)

@ Expressions and statements are not the same thing!

@ You can use expressions wherever you can use a statement
@ You cannot use a statement where you see "expression"!

@ For example, you cannot use a statement inside a if
condition!

@ But you can use another if as a statement

@ You can write the following:

if (x >0) if (y >0) printf("north east\n");
el se printf("south east\n");
else if (y >0) printf("north west\n");
el se printf("south west\n");

@ here if is used as a statement inside another if
@ You cannot write the following:

if (if (x>0)) ...

@ in facts, an if condition can only be an expression!
@ Remember:

@ An expression has always a (numerical) value which is the
result of an operation

@ Ois interpreted as false, any other number is interpreted as
true

@ A statement may be an expression (in which case it has a
numerical value), or something else

More on If conditions

@ To check if variable i is between 1 and 10:

if (i <= 10 && i>= 1) ..

@ or alternatively:

if (1<=i & i <= 10) ...

@ Don't use the following:

if (1 <=i <=10) ...

@ (what happens? check out condi ti ons/ condi ti onl. c)

Common mistakes

@ One common mistake is the following:

int a = b5;
if (a=0) printf("ais 0\n");
else printf("ais different fromO0O\n");

@ What does the code above print on screen? (see
condi ti ons/ condi tion2. c)

@ The value of expression a = 0 (which is an assignment,
not a comparison!) is 0, i.e. the value of a after the
assignment

@ Probably, the programmer wanted to say something else:

if (a==0) printf("ais 0\n");
else printf("a is different fromO\n");

Loops

@ In many cases, we need to execute the same code many
times, each time on a different set of values

@ Example:

@ Given an integer number stored in variable a, print “number
is prime” if the number is prime (divisible only by 1 and by
itself)

@ To solve the problem, we need to check the remainder of
the division between a and all numbers less than a. Ifitis
always different from 0, then the number is prime

@ However, we do not know the value of a before program
execution; how many division should we do?

@ Solution: use the while construct

While loop

@ The general form:

whi | e (<expression>) statenent;

@ As usual, statement can also be a block of statements

@ Similar to an if, but the statement is performed iteratively
while the condition is “true” (i.e. different from 0)

@ Example: sum the first 10 numbers:

int sum= 0;
int i =0;

while (i < 10) {
sum = sum + i;
i =i + 1;

}

printf("The sumof the first 10 nunmbers: %\ n", sum;

Break and continue statements

@ Sometimes we need to go out of the loop immediately,
without completing the rest of the statements. To do this
we can use the break statement

int i =0;
while (i < 10) {
i ++;
if ((i %5) == 0) break;
printf("% is not divisible by 5\n", i);

}
printf("Qut of the |oop");

@ Another possibility is to continue with the next iteration
without complete the rest of the statements:

int i =0;
while (i < 10) {
i ++:
if (i %5) continue;
printf("% is not divisible by 5\n", i);

}
printf("CQut of the |oop\n");

Prime numbers

primes/isprime.c

{

#i ncl ude <stdi o. h>

int main()

int k, i, flag;

printf("This programtests if a nunber is prime\n");
printf("lnsert a nunber: ");

scanf (" %", &Kk);

while (i < k) {

if (k %i ==0) {
printf("%l is a divisor: % = % x %\n", i, k, i, kli);
flag = O;
br eak;

}

i ++;

}

printf("% is ", k);

if (!flag) printf("not ");
printf("prime\n");

Loops

@ if then else and while constructs are all we need to
program
@ It can be proved in theoretical computer science that with
one loop construct and one selection construct, the
language is equivalent to a Turing Machine, the simplest
and more general kind of calculator
@ However, sometimes using only while loops can be
annoying
@ The C language provides two more loop constructs: for
loops and do-while loops

For loop

@ The most general form is the following:

for(<exprl>;, <expr2>; <expr3>) statenent;

@ expr 1 is also called initialization; it is executed before

entering the first loop iteration
@ expr 2 is also called condition; it is checked before every
iteration;

@ ifitis false, the loop is terminated;
@ ifitis true, the iteration is performed

@ expr 3 is also called instruction; it is performed at the end
of every iteration

@ The most common usage is the following:

for (i=0; i<10; i++)
printf("The value of i is now %\n", i);

Sum the first 10 numbers

int n = 10;

int i;

int sum= O;

for (i=0; i<n; i++) sum+=1i;

printf("The sumof the first % nunbers is %\n", n, sum;

Prime numbers

primes/isprime2.c

#i ncl ude <stdio. h>

int main()

{
int k, i, flag;

printf("This programtests if a nunber is prime\n");
printf("Insert a nunber: ");

scanf ("%", &K);

flag = 1;
for (i=0; i<k/2; i++)
if (k %i ==0) {
printf("%l is a divisor: % = 9% x %\n", i, k, i, kli);
flag = O;
br eak;
}

printf("%l is ", k);
if (!flag) printf("not ");
printf("prinme\n");

Equivalence between for and while

@ We can always rewrite any while loop as a for loop, and
vice versa

for (exprl; expr2; expr3) statenent;

can be rewritten as:

expr1l,

while (expr2) {
st at enment ;
expr 3;

}

@ On the other hand, the following while loop;

whil e (expr) statenent;

can be rewritten as:

for(; expr ;) statenent;

Exercises

@ Given the following for loop, rewrite it as a while loop;

int k, i=0; j=8;

for (k=0; k<j; k++) {
i = k+j;
j--3

printf("i is now %\n", i);

@ Write a program that, given an integer number in input,
prints on screen all prime factors of the number,

@ For example, given 6, prints 2, 3

@ given 24, prints 2, 2, 3

@ given 150, prints 2, 3,5, 5

@ efc.

@ Suggestion: use a while loop initially

Exercises: strange for loops

Since an expression can be pretty much everything, you can
write lot of strange things with for loops

@ Incrementing 2 variables with the comma operator:

int i, j;
for (i=0, j=0; i < 5; i++ |+=2)
printf(" i =9, | =9%\n", i, j);

@ What does the code above print on screen?

@ What the code below prints on screen?

int i;

int g=0;

for (i=0; i<10; g +=i++);
printf("%", 9);

	First steps
	Declarations and definitions
	Variables
	Simple Input/output
	First exercises
	Advanced operators

	Statements and control flow
	If then else
	While loop
	For loop
	Exercises

