Introduction to the C programming language
Lecture 2

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

November 18, 2008

Outline

@ More on statements

9 Arrays

@ Exercises
@ Strings

e Functions
@ Exercises

http://retis.sssup.it/~lipari

do while loop

@ An alternative way to write a loop is to use the do - while
loop

do {
st atenent 1;
st at enent 2;

} while(condition);

@ The main difference between the whi | e and the
do - whil e is that

@ in the whi | e loop the condition is evaluated before every

iteration,
@ inthedo - whil e case the condition is evaluated after

every iteration

@ Hence, with do - whi |l e the loop is always performed at
least once

Nested loops

@ It is possible to define a loop inside another loop. This is
very useful in many cases in which we have to iterate on

two variables
@ What does the following program do?

loops/dloop.c

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>

int main()

{
int i, j;
printf("%\n", 2);

for (i =3; i <=100; i =i +1) {
for (j =2, j <i; j =] +1){
if (i %j == 0) break;
if (j >sart(i)) {
printf("%\n", i);
br eak;

}
}
}

return O;

Exercises

@ Write the equivalence between whi | e and do - whil e

@ Write the equivalence between for and do - while

@ Write a program that, given two numbers, finds all common
factors between them

o Example 1: 12 and 15, will output 3
@ Example 2: 24 and 12, will output 2, 3, 4, 6

Reading C programs

@ Itis very important to be able to learn how to read C
programs written by someone else
o Please, take your time to read programs!
@ You must look at a program as you were the processor: try
to “execute a program” on paper, writing down the values of

the variables at every step
@ Also, please try to write “clean” programs!

@ so that other programs will find easy to read your own
programs

switch - case

@ Sometimes, we have to check several alternatives on the

same value; instead of a sequence of if-then-else, we can
use a switch case statement:

loops/switch.c

{

int main()

i nt nunber;

printf("Enter a nunber: ");

scanf ("%", &number);

swi t ch(nunber) {

case 0 :
printf("None\n");
br eak;

case 1 :
printf("One\n");
br eak;

case 2 :
printf("Two\n");
br eak;

case 3 :

case 4 :

case 5 :
printf("Several\n");
br eak;

default :
printf("Many\n");
br eak;

Arrays

@ Instead of single variables, we can declare arrays of
variables of the same type

@ They have all the same type and the same name
@ They can be addressed by using an index

int i;
int a[10];

a[0]
a[1]
i = 5;

a[i] = a[i-1] + a[i+1];

10;
20;

@ Very important: If the array has N elements, index starts
at 0, and last element is at N-1

@ In the above example, last valid element is a[9]

Example

arrays/dice.c

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

/+* Counts the frequency of occurrence of a nunber when rolling two dices */

int main()
{
int i;
int di, d2;
int a[13]; [/=* uses [2..12] =/
for (i =2; i <=12; i =i + 1) a[i] = 0;
for (i =0; i <100; i =i + 1) {
dl = rand() %6 + 1;

=

d2 rand() %6 + 1;
a[dl + d2] = a[dl + d2] + 1;
}

for(i = 2; i <= 12; i i+ 1)
printf("%: %\n", i, a[i]);

return O;

Quick exercise

@ You have no more than 5 minutes to complete this
exercise!

@ Modify the previous program, so that the user can specify
the number of times the two dices will be rolled

@ Check that the user do not inserts a negative number in
which case you print out an error and exit

Index range

@ What happens if you specify an index outside the array
boundaries?

@ The compiler does not complain, but you can get a random
run-time error!

@ Consider the following program: what will happen?

arrays/outbound.c

#i ncl ude <stdio. h>

int main()
{ . .
int i;
int a[10];
for (i=0; i<15; i++) {
a[i] = 0;
printf("a[%] = %@\n", i, afi]);
}

printf("Initialization conpleted!'\n");

Questions

@ Index out of bounds is a programming error
© Why the compiler does not complain?
@ Why the program does not complain at run-time?
@ What is the memory allocation of the program? Where is
the array allocated?

Initialization

@ Arrays can be initialized with the following syntax

int a[4] = {0, 1, 2, 3};

@ This syntax is only for static initialization, and cannot be
used for assignment

int a[4];

a={0, 1, 2, 3}; [// syntax error!

Matrix

@ Two-dimensional arrays (matrixes) can be defined as
follows

double mat[3][3];

mat[0] [2] = 3.5;

@ Itis also possible to define more than 2 dimensions:

int cube[4][4]][4];

@ Initialization as follows: arrays/matrix.c

#i ncl ude <stdio. h>
int main()

int i;
double mat[3][3] = {
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
IE
mat[0][2] = 3.5;
/linitialize the whole matrix using single vector indeces
for (i=0; i<9; i++) {
mat[i/3][i9B] = 2.0;

}
printf("Done\n");

Exercises

@ Given 2 arrays of doubles of length 3 that represents
vector in a 3-dimensional space, compute the scalar
product and the vectorial product

@ Given an array of 30 integers, compute max, min and
average

Strings

@ There is not a specific type for strings in C
@ A string is a sequence of char terminated by value O
@ To store strings, it is possible to use arrays of chars

char nane[20] ;

@ Initialization:

char nane[20] = "Lipari"

@ But again, this syntax is not valid for assignments!

@ In memory:

name 0 [[3 [4 (& [6 [[8 I[9]

String length
@ IMPORTANT: if you need a string with 10 characters, you
must desclare an array of 11 characters! (one extra to
store the final 0)
@ Computing string length

char s[20];

/1 how many valid characters in s?

int i;

for (i=0; 1<20; i++) if (s[i] == 0) break;

if (i<20) printf("String is % characters long\n", i);
el se printf("String is not valid!'\n");

@ Whatisin a String? strings/contents.c

#i ncl ude <stdio. h>

int main()

{
int i;
char str[20] = "donald duck";
for (i=0; i<20; i++)

printf("% ", str[i]);
printf("\n");

String manipulation functions

int strcpy(char s1[, char s2[]);] copies string s2 into string s1
Int strcmp(char s1[, char s2[]);] compare strings alphabetically
int strcat(char s1[, char s2[]);] append s2 to sl

int strlen(char s[);] computes string length

printf(“%s”, str); prints string on screen

Safe versions

@ Previous functions are not safe: if the string is not well
terminated, anything can happen

@ There are safe versions of each:
int strncpy(char s1[, char s2[], int n);] copies at most n

characters

int strncat(char s1[, char s2[], int n);] appends at most n
characters

int strncmp(char s1[, char s2[], int n);] compares at most n
characters

Function definition and declaration

@ A function is defined by:

@ a unique name

@ areturn value

o a list of arguments (also called parameters)
@ a body enclosed in curly braces

/+* returns the power of x toy */
doubl e power (double x, int y)

int i;
doubl e result = 1;

for (i=0; i <y; i++)
result = result * Xx;

return result;

Function call

functions/power.c

int main()
{
doubl e nyx;

int nyy;
doubl e res;

printf("Enter x and y\n");
printf("x? ");

scanf ("% g", &nyx);
printf("y? ");

scanf ("%", &nyy);

res = power (nyx, myy);

printf("x"y = %gt\n", res);

Parameters

@ Modifications on local parameters have no effect on the

caller
int multbytwo(int x)
{
X = X * 2;
return x;
}
int main()
{
i =5

res = mul tbytwo(i);
[+ how nmuch is i here? */

@ X s just a copy of i

@ modifying x modifies the copy
not the original value

Array parameters

@ We say that parameters are passed by value
@ every time we call the function, a copy is made
@ There is only one exception to this rule: when we pass

arrays!

@ The array is not copied, so modification to the local
parameter are immediately reflected to the original variable

Array parameters

functions/swap.c

#i ncl ude <stdi o. h>

void swap (int af[])

.
int tnp;

tnp = a[0];
a[0] = a[1];
a[1] = tnp;
return;

}

int main()

{
int ny[2] = {1,5)}

printf ("before swap: % %",
ny[0], ny[1]);

swap(ny) ;

printf ("after swap: %l %l",
ny[0], ny[1]);

@ The array is not copied

@ modification on array a
are reflected in
modification on array my

@ (this can be
understood better
when we study
pointers)

@ Notice also:

@ the swap function does
not need to return
anything: so the return
type is void

@ the array my is
initialized when it is
declared

Exercises

@ Write a function that, given a string, returns it's length

@ Write a function that, given two strings s1 and s2, returns 1
if s2 is contained in sl

© Write a function that given a string, substitutes all lower
case characters to upper case

	More on statements
	Arrays
	Exercises
	Strings

	Functions
	Exercises

