
Introduction to the C programming language
Lecture 2

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

November 21, 2008

http://retis.sssup.it/~lipari

Outline

1 More on statements

2 Arrays
Exercises
Strings

3 Functions
Exercises

Outline

1 More on statements

2 Arrays
Exercises
Strings

3 Functions
Exercises

do while loop

An alternative way to write a loop is to use the do - while

loop

do {
statement1;
statement2;
...

} while(condition);

The main difference between the while and the
do - while is that

in the while loop the condition is evaluated before every
iteration,
in the do - while case the condition is evaluated after
every iteration

Hence, with do - while the loop is always performed at
least once

Nested loops
It is possible to define a loop inside another loop. This is
very useful in many cases in which we have to iterate on
two variables

Nested loops
It is possible to define a loop inside another loop. This is
very useful in many cases in which we have to iterate on
two variables

What does the following program do?

loops/dloop.c

#include <stdio.h>
#include <math.h>

int main()
{

int i, j;

printf("%d\n", 2);

for (i = 3; i <= 100; i = i + 1) {
for (j = 2; j < i; j = j + 1) {

if (i % j == 0) break;

if (j > sqrt(i)) {
printf("%d\n", i);
break;

}
}

}
return 0;

}

Exercises

1 Write the equivalence between while and do - while

2 Write the equivalence between for and do - while
3 Write a program that, given two numbers, finds all common

factors between them
Example 1: 12 and 15, will output 3
Example 2: 24 and 12, will output 2, 3, 4, 6

Reading C programs

It is very important to be able to learn how to read C
programs written by someone else

Please, take your time to read programs!
You must look at a program as you were the processor: try
to “execute a program” on paper, writing down the values of
the variables at every step
Also, please try to write “clean” programs!

so that other programs will find easy to read your own
programs

switch - case
Sometimes, we have to check several alternatives on the
same value; instead of a sequence of if-then-else, we can
use a switch case statement:

loops/switch.c

int main()
{

int number;

printf("Enter a number: ");
scanf("%d", &number);
switch(number) {
case 0 :

printf("None\n");
break;

case 1 :
printf("One\n");
break;

case 2 :
printf("Two\n");
break;

case 3 :
case 4 :
case 5 :

printf("Several\n");
break;

default :
printf("Many\n");
break;

}
}

Outline

1 More on statements

2 Arrays
Exercises
Strings

3 Functions
Exercises

Arrays

Instead of single variables, we can declare arrays of
variables of the same type

They have all the same type and the same name

They can be addressed by using an index

int i;
int a[10];

a[0] = 10;
a[1] = 20;
i = 5;
a[i] = a[i-1] + a[i+1];

Very important: If the array has N elements, index starts
at 0, and last element is at N-1

In the above example, last valid element is a[9]

Example

arrays/dice.c

#include <stdio.h>
#include <stdlib.h>

/* Counts the frequency of occurrence of a number when rolling two dices */
int main()
{

int i;
int d1, d2;
int a[13]; /* uses [2..12] */

for (i = 2; i <= 12; i = i + 1) a[i] = 0;

for (i = 0; i < 100; i = i + 1) {
d1 = rand() % 6 + 1;
d2 = rand() % 6 + 1;
a[d1 + d2] = a[d1 + d2] + 1;

}

for(i = 2; i <= 12; i = i + 1)
printf("%d: %d\n", i, a[i]);

return 0;
}

Quick exercise

You have no more than 5 minutes to complete this
exercise!

Modify the previous program, so that the user can specify
the number of times the two dices will be rolled

Check that the user do not inserts a negative number in
which case you print out an error and exit

Index range

What happens if you specify an index outside the array
boundaries?

Index range

What happens if you specify an index outside the array
boundaries?

The compiler does not complain, but you can get a random
run-time error!

Consider the following program: what will happen?

arrays/outbound.c

#include <stdio.h>

int main()
{

int i;
int a[10];

for (i=0; i<15; i++) {
a[i] = 0;
printf("a[%d] = %d\n", i, a[i]);

}

printf("Initialization completed!\n");
}

Questions

Index out of bounds is a programming error
1 Why the compiler does not complain?
2 Why the program does not complain at run-time?

What is the memory allocation of the program? Where is
the array allocated?

Initialization

Arrays can be initialized with the following syntax

int a[4] = {0, 1, 2, 3};

This syntax is only for static initialization, and cannot be
used for assignment

int a[4];

a = {0, 1, 2, 3}; // syntax error!

Matrix
Two-dimensional arrays (matrixes) can be defined as
follows

double mat[3][3];

mat[0][2] = 3.5;

It is also possible to define more than 2 dimensions:
int cube[4][4][4];

Initialization as follows: arrays/matrix.c

#include <stdio.h>

int main()
{

int i;
double mat[3][3] = {

{0, 0, 0},
{0, 0, 0},
{0, 0, 0}

};

mat[0][2] = 3.5;

//initialize the whole matrix using single vector indeces
for (i=0; i<9; i++) {

mat[i/3][i%3] = 2.0;
}
printf("Done\n");

Outline

1 More on statements

2 Arrays
Exercises
Strings

3 Functions
Exercises

Exercises

1 Given 2 arrays of doubles of length 3 that represents
vector in a 3-dimensional space, compute the scalar
product and the vectorial product

2 Given an array of 30 integers, compute max, min and
average

Outline

1 More on statements

2 Arrays
Exercises
Strings

3 Functions
Exercises

Strings

There is not a specific type for strings in C

A string is a sequence of char terminated by value 0

To store strings, it is possible to use arrays of chars

char name[20];

Initialization:

char name[20] = "Lipari";

But again, this syntax is not valid for assignments!

In memory:

[0]name [3] [5][1] [2] [4] [6] [7] [8] [9]

L i p a r i 0

String length
IMPORTANT: if you need a string with 10 characters, you
must desclare an array of 11 characters! (one extra to
store the final 0)
Computing string length
char s[20];
...
// how many valid characters in s?
int i;
for (i=0; i<20; i++) if (s[i] == 0) break;

if (i<20) printf("String is %d characters long\n", i);
else printf("String is not valid!\n");

What is in a string? strings/contents.c

#include <stdio.h>

int main()
{

int i;
char str[20] = "donald duck";

for (i=0; i<20; i++)
printf("%d ", str[i]);

printf("\n");
}

String manipulation functions

int strcpy(char s1[, char s2[]);] copies string s2 into string s1

int strcmp(char s1[, char s2[]);] compare strings alphabetically

int strcat(char s1[, char s2[]);] append s2 to s1

int strlen(char s[);] computes string length

printf(“%s”, str); prints string on screen

Safe versions

Previous functions are not safe: if the string is not well
terminated, anything can happen

There are safe versions of each:
int strncpy(char s1[, char s2[], int n);] copies at most n

characters
int strncat(char s1[, char s2[], int n);] appends at most n

characters
int strncmp(char s1[, char s2[], int n);] compares at most n

characters

Outline

1 More on statements

2 Arrays
Exercises
Strings

3 Functions
Exercises

Function definition and declaration

A function is defined by:
a unique name
a return value
a list of arguments (also called parameters)
a body enclosed in curly braces

/* returns the power of x to y */
double power(double x, int y)
{

int i;
double result = 1;

for (i=0; i < y; i++)
result = result * x;

return result;
}

Function call

functions/power.c

int main()
{

double myx;
int myy;
double res;

printf("Enter x and y\n");
printf("x? ");
scanf("%lg", &myx);
printf("y? ");
scanf("%d", &myy);

res = power(myx, myy);

printf("x^y = %lgt\n", res);
}

Parameters

Modifications on local parameters have no effect on the
caller

int multbytwo(int x)
{

x = x * 2;
return x;

}

int main()
{

...
i = 5;
res = multbytwo(i);
/* how much is i here? */
...

}

x is just a copy of i

modifying x modifies the copy
not the original value

Array parameters

We say that parameters are passed by value
every time we call the function, a copy is made

There is only one exception to this rule: when we pass
arrays!

The array is not copied, so modification to the local
parameter are immediately reflected to the original variable

Array parameters

functions/swap.c

#include <stdio.h>

void swap (int a[])
{

int tmp;
tmp = a[0];
a[0] = a[1];
a[1] = tmp;
return;

}

int main()
{

int my[2] = {1,5}
printf ("before swap: %d %d",

my[0], my[1]);

swap(my);

printf ("after swap: %d %d",
my[0], my[1]);

}

The array is not copied
modification on array a
are reflected in
modification on array my

(this can be
understood better
when we study
pointers)

Notice also:
the swap function does
not need to return
anything: so the return
type is void
the array my is
initialized when it is
declared

Outline

1 More on statements

2 Arrays
Exercises
Strings

3 Functions
Exercises

Exercises

1 Write a function that, given a string, returns it’s length
2 Write a function that, given two strings s1 and s2, returns 1

if s2 is contained in s1
3 Write a function that given a string, substitutes all lower

case characters to upper case

	More on statements
	Arrays
	Exercises
	Strings

	Functions
	Exercises

