
Introduction to the C programming language
Lecture 3

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

November 21, 2008

http://retis.sssup.it/~lipari

Outline

1 Visibility, scope and lifetime

2 Structures

3 Casting

4 More on input/output: files
Exercises

Outline

1 Visibility, scope and lifetime

2 Structures

3 Casting

4 More on input/output: files
Exercises

Definitions

Global variables are variables defined outside of any
function

Local variables are defined inside a function
The visibility (or scope) of a variable is the set of
statements that can “see” the variable

remember that a variable (or any other object) must be
declared before it can be used

The lifetime of a variable is the time during which the
variable exists in memory

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

temp is a global variable
scope: all objects defined after temp
lifetime: duration of the program

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

temp is a global variable
scope: all objects defined after temp
lifetime: duration of the program

res and s[] are local variables
scope: body of function main
lifetime: duration of the program

Global scope

A global variable is declared outside all functions
This variable is created before the program starts
executing, and it exists until the program terminates
Hence, it’s lifetime is the program duration

The scope depends on the point in which it is declared
All variables and functions defined after the declaration can
use it
Hence, it’s scope depends on the position

Local variables

Local variables are defined inside functions

int g;

int myfun()
{
int k; double a;
...

}

int yourfun()
{
...

}

g is global

k and a are local to myfun()

in function yourfun(), it is possible to use
variable g but you cannot use variable k
and a (out of scope)

Local variables

Local variables are defined inside functions

int g;

int myfun()
{
int k; double a;
...

}

int yourfun()
{
...

}

g is global

k and a are local to myfun()

in function yourfun(), it is possible to use
variable g but you cannot use variable k
and a (out of scope)

k and a cannot be used in yourfun() because their scope
is limited to function myfun().

Local variable lifetime
Local variable are created only when the function is
invoked;
They are destroyed when the function terminates

Their lifetime corresponds to the function execution

Since they are created at every function call, they hold only
temporary values useful for calculations
their value is not kept between two calls!

int fun(int x)
{

int i = 0;

i += x;
return i;

}

int main()
{

int a, b;

a = fun(5);
b = fun(6);

...
}

i is initialized to 0 at every fun() call

at this point, a is 5 and b is 6;

Modifying lifetime

To modify the lifetime of a local variable, use the static

keyword

int myfun()
{

static int i = 0;

i++;

return i;
}

int main()
{

printf("%d ", myfun());
printf("%d ", myfun());

}

This is a static variable: it is initialized only
once (during the first call), then the value
is maintained across successive calls

Modifying lifetime

To modify the lifetime of a local variable, use the static

keyword

int myfun()
{

static int i = 0;

i++;

return i;
}

int main()
{

printf("%d ", myfun());
printf("%d ", myfun());

}

This is a static variable: it is initialized only
once (during the first call), then the value
is maintained across successive calls

This prints 1

Modifying lifetime

To modify the lifetime of a local variable, use the static

keyword

int myfun()
{

static int i = 0;

i++;

return i;
}

int main()
{

printf("%d ", myfun());
printf("%d ", myfun());

}

This is a static variable: it is initialized only
once (during the first call), then the value
is maintained across successive calls

This prints 1

This prints 2

Hiding

It is possible to define two variables with the same name in
two different scopes

The compiler knows which variable to use depending on
the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

Hiding

It is possible to define two variables with the same name in
two different scopes

The compiler knows which variable to use depending on
the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

Hiding

It is possible to define two variables with the same name in
two different scopes

The compiler knows which variable to use depending on
the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

int i;
int fun1()
{

int i;
i++;

}
int fun2()
{

i++;
}

Hiding

It is possible to define two variables with the same name in
two different scopes

The compiler knows which variable to use depending on
the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

int i;
int fun1()
{

int i;
i++;

}
int fun2()
{

i++;
}

Increments the
local variable of
fun1()

Hiding

It is possible to define two variables with the same name in
two different scopes

The compiler knows which variable to use depending on
the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

int i;
int fun1()
{

int i;
i++;

}
int fun2()
{

i++;
}

Increments the
local variable of
fun1()

Increments the
global variable

Outline

1 Visibility, scope and lifetime

2 Structures

3 Casting

4 More on input/output: files
Exercises

Structure definition

In many cases we need to aggregate variables of different
types that are related to the same concept

each variable in the structure is called a field

the structure is sometimes called record

Example

struct student {
char name[20];
char surname[30];
int age;
int marks[20];
char address[100];
char country[100];

};

struct student s1;

struct position {
double x;
double y;
double z;

};

struct position p1, p2, p3;

Accessing data

To access a field of a structure, use the dot notation

struct student s1;
...
printf("Name: %s\n", s1.name);
printf("Age : %d\n", s1.age);

#include <math.h>

struct position p1;
...
p1.x = 10 * cos(0.74);
p1.y = 10 * sin(0.74);

Array of structures

It is possible to declare array of structures as follows:

struct student my_students[20];
int i;

my_student[0].name = "...";
my_student[0].age = "...";
...

for (i=0; i<20; i++) {
printf("Student %d\n", i);
printf("Name: %s\n", my_student[i].name);
printf("Age: %d\n", my_student[i].age);

...
}

Other operations with structures
When calling functions, structures are passed by value

that is, if you modify the parameter, you modify only the
copy, and the original value is not modified

Initialization: you can use curly braces to initialize a
structure
struct point {

double x;
double y;

};

struct point x = {0.5, -7.1};

You can use normal assignment between structures of the
same type

the result is a field-by-field copy

struct point {
double x;
double y;

};

struct point x = {4.1, 5.0};

struct point y;

y = x;

Outline

1 Visibility, scope and lifetime

2 Structures

3 Casting

4 More on input/output: files
Exercises

Converting variables between types

Sometimes we need to convert a variable between
different types

Example:

int a = 5;
double x;

x = a;

x = a / 2;

a = x * 2;

Converting variables between types

Sometimes we need to convert a variable between
different types

Example:

int a = 5;
double x;

x = a;

x = a / 2;

a = x * 2;

Here we have an implicit conversion from int to dou-
ble; the compiler does not complain

Converting variables between types

Sometimes we need to convert a variable between
different types

Example:

int a = 5;
double x;

x = a;

x = a / 2;

a = x * 2;

Here we have an implicit conversion from int to dou-
ble; the compiler does not complain

Here we have an implicit conversion from int to dou-
ble. However, the conversion is performed on the
result of the division; therefore the result is 2 and
not 2.5 as one might expect!

Converting variables between types

Sometimes we need to convert a variable between
different types

Example:

int a = 5;
double x;

x = a;

x = a / 2;

a = x * 2;

Here we have an implicit conversion from int to dou-
ble; the compiler does not complain

Here we have an implicit conversion from int to dou-
ble. However, the conversion is performed on the
result of the division; therefore the result is 2 and
not 2.5 as one might expect!

Here we have a conversion from double to int. With
this conversion, we might lose in precision, hence
the compiler issues a warning

Explicit casting

It is possible to make casting explicit as follows

int a;
double x;

x = ((double) a) / 2;

a = (int)(x * 2);

Explicit casting

It is possible to make casting explicit as follows

int a;
double x;

x = ((double) a) / 2;

a = (int)(x * 2);

Here the conversion is not explicit. First, a is
converted to double; then, the division is per-
formed (a fractional one); then the result (a dou-
ble) is assigned to x.

Explicit casting

It is possible to make casting explicit as follows

int a;
double x;

x = ((double) a) / 2;

a = (int)(x * 2);

Here the conversion is not explicit. First, a is
converted to double; then, the division is per-
formed (a fractional one); then the result (a dou-
ble) is assigned to x.

Here the compiler does not issue any warning,
because the programmer has made it explicit
that he/she wants to do this operation.

Outline

1 Visibility, scope and lifetime

2 Structures

3 Casting

4 More on input/output: files
Exercises

A brief overview

In the next slides we will present a quick overview of some
functions to manipulate file

These are useful to solve some exercises

We will come back to these functions at some point

Files

A file is a sequence of bytes, usually stored on
mass-storage devices

We can read and/or write bytes from/to files sequentially
(as in magnetic tapes)

File can contais sequences of bytes (binary) or sequence
of characters (text files)

There is really no difference: a character is nothing more
than a byte
It’s the interpretation that counts

File operations

Before operating on a file, we must open it

then we can operate on it

finally we have to close the file when we have done
in a C program, an open file is identified by a variable of
type FILE *

The * denotes a pointer: we will see next lecture what a
pointer is

Opening a file

To open a file, call fopen
FILE *fopen(char *filename, char *mode);

filename and mode are strings
filename is the name of the file (may include the path,
relative or absolute)
mode is the opening mode

"r" for reading or "w" for writing or "a" for writing in
append mode

Example: open a file in reading mode

FILE *myfile;

myfile = fopen("textfile.txt", "r");
...

fclose(myfile);

Reading and writing

At this stage, we will consider only text files

You can use fprintf() and fscan(), similar to the
functions yu have already seen

files/input.c

#include <stdio.h>

FILE *myfile;

int main()
{

int a, b, c;
char str[100];

myfile = fopen("textfile.txt", "r");

fscanf(myfile, "%d %d", &a, &b);
fscanf(myfile, "%s", str);
fscanf(myfile, "%d", &c);

printf("what I have read:\n");
printf("a = %d b = %d c = %d\n", a, b, c);
printf("str = %s\n", str);

}

fprintf and fgets

files/output.c

#include <stdio.h>

FILE *myfile1;
FILE *myfile2;

int main()
{

int i, nlines = 0;
char str[255];

myfile1 = fopen("textfile.txt", "r");
myfile2 = fopen("copyfile.txt", "w");
fgets(str, 255, myfile1);

while (!feof(myfile1) {
fprintf(myfile2, "%s", str);
nlines++;
fgets (str, 255, myfile1);

}
printf("file has been copied!\n");
printf("%d lines read\n", nlines);

}

Outline

1 Visibility, scope and lifetime

2 Structures

3 Casting

4 More on input/output: files
Exercises

Exercises with files

Write a program that reads a file line by line and prints
every line reversed

Hint: Write a function that reverts a string

Write a function that reads a file and counts the number of
words

Hint: two words are separated by spaces, commas “,”, full
stop “.” , semicolon “;”, colon “:”, question mark “?”,
exclamation mark “!”, dash “-”, brackets. see
http://en.wikipedia.org/wiki/Punctuation
this is called tokenize

http://en.wikipedia.org/wiki/Punctuation

	Visibility, scope and lifetime
	Structures
	Casting
	More on input/output: files
	Exercises

