Introduction to the C programming language
Lecture 3

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

November 21, 2008

http://retis.sssup.it/~lipari

Outline

Q Visibility, scope and lifetime
9 Structures

9 Casting

9 More on input/output: files
@ Exercises

Outline

Q Visibility, scope and lifetime

Definitions

@ Global variables are variables defined outside of any
function

@ Local variables are defined inside a function
@ The visibility (or scope) of a variable is the set of
statements that can “see” the variable
@ remember that a variable (or any other object) must be
declared before it can be used
@ The lifetime of a variable is the time during which the
variable exists in memory

Examples

pn is a global variable
scope: all program
lifetime: duration of the program

#incl ude <stdio. h>

int pn[100];
int is_prime(int x)

int i,j;

int tenp;
int main()

int res;
char s[10];

Examples

int

#incl ude <stdio. h>

pn[100] ;
is_prime(int x) /

int i,j;

tenp;
mai n()

int res;
char s[10];

L —

pn is a global variable
scope: all program
lifetime: duration of the program

X is a parameter
scope: body of function is_prime
lifetime: during function execution

Examples

int

#incl ude <stdio. h>

pn[100] ;

is_prime(int x)/
int i,j; \

tenp;
mai n()

int res;
char s[10];

L —

pn is a global variable
scope: all program
lifetime: duration of the program

X is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

Examples

pn is a global variable
scope: all program
lifetime: duration of the program

#incl ude <stdio. h>

int pn[100]; | Xxisaparameter

o o / scope: body of function is_prime
int is_prime(int x) lifetime: during function execution

int i,j; . .

. T ——————— | ijarelocal variables
} scope: body of function is_prime
lifetime: during function execution

int tenp;
int mai n()\\ temp is a global variable

int res: scope: all objects defined after temp

char s[10]; lifetime: duration of the program

Examples

int

#incl ude <stdio. h>

pn[100] ;

is_prime(int x) /
int i,j; \
tenp;

min()\

int res;

pn is a global variable
scope: all program
lifetime: duration of the program

X is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

temp is a global variable
scope: all objects defined after temp
lifetime: duration of the program

res and s[] are local variables
scope: body of function main
lifetime: duration of the program

Global scope

@ A global variable is declared outside all functions
@ This variable is created before the program starts
executing, and it exists until the program terminates
@ Hence, it’s lifetime is the program duration
@ The scope depends on the point in which it is declared
@ All variables and functions defined after the declaration can
use it
@ Hence, it's scope depends on the position

Local variables

@ Local variables are defined inside functions

e — | gisglobal |
int nyfun()

int k; doublea;, | = kand aare local to myfun() |‘
}
int yourfun() | in function yourfun(), it is possible to use
{ N variable g but you cannot use variable k
} and a (out of scope)

Local variables

@ Local variables are defined inside functions

e — | gisglobal |
int nyfun()

int k; doublea;, | = kand aare local to myfun() |
}
int yourfun() | in function yourfun(), it is possible to use
{ N variable g but you cannot use variable k
} and a (out of scope)

@ k and a cannot be used in your f un() because their scope
is limited to function myf un().

Local variable lifetime

@ Local variable are created only when the function is
invoked;
@ They are destroyed when the function terminates
@ Their lifetime corresponds to the function execution
@ Since they are created at every function call, they hold only
temporary values useful for calculations
@ their value is not kept between two calls!

int fun(int x)

int i =0;

i += x;

return i;
}

int main()

™ iis initialized to O at every fun() call |

int a, b; | — at this point, ais 5 and b is 6; |

Modifying lifetime

@ To modify the lifetime of a local variable, use the st ati ¢

keyword
int nyfun()
{
static int i = 0;
_\\ This is a static variable: it is initialized only
i+ once (during the first call), then the value
is maintained across successive calls
return i;
}
int main()
{
printf("od ", nyfun());
printf("o%d ", nyfun());
}

Modifying lifetime

@ To modify the lifetime of a local variable, use the st ati ¢

keyword
int nyfun()
{
static int i = 0;
_\\ This is a static variable: it is initialized only
i+ once (during the first call), then the value
is maintained across successive calls
return i;
} This prints 1 |‘
int main()
{
printf("%d ", nyfun()); |
printf("o%d ", nyfun());
}

Modifying lifetime

@ To modify the lifetime of a local variable, use the st ati ¢

keyword
int nyfun()
{
static int i = 0;
_\\ This is a static variable: it is initialized only
i+ once (during the first call), then the value
is maintained across successive calls
return i;
} This prints 1 |‘
int main()
{ This prints 2 |‘
printf("vd ", myfun()); (_/
printf("% ", nyfun()); |
}

Hiding

@ It is possible to define two variables with the same name in
two different scopes

@ The compiler knows which variable to use depending on
the scope

@ Itis also possible to hide a variable

int funl()
int i;

}

int fun2()

{ . .
int i;

i ++;

}

Hiding

@ It is possible to define two variables with the same name in
two different scopes

@ The compiler knows which variable to use depending on
the scope

@ Itis also possible to hide a variable

int funl()

int i;

y | increments the
int fun2() local variable of
{ int i; fun2()

i ++;

}

Hiding

@ It is possible to define two variables with the same name in
two different scopes

@ The compiler knows which variable to use depending on
the scope

@ Itis also possible to hide a variable

int funl() N

int i; int funl()

{
y | increments the int i
int fun2() local variable of) P+
St i; fun2() i(m fun2()

i++;

}

Hiding

@ It is possible to define two variables with the same name in
two different scopes
@ The compiler knows which variable to use depending on

the scope

@ Itis also possible to hide a variable

int funl()
int i;

} L—

int fun2()

{
int i;
e

}

increments the

local variable of
fun2()

int i;

int funl()

e
int i;
i++;

}
int fun2()

i++;

}

_

| Increments the
local variable of
funi()

Hiding

@ It is possible to define two variables with the same name in

two different scopes

@ The compiler knows which variable to use depending on

the scope

@ Itis also possible to hide a variable

int funl()
int i;
}
int fun2()
{
int i;
e

}

| —

increments the
local variable of
fun2()

int i;

int funl()

e
int i;
i++;

}
int fun2()

i++;

}

[—

_

<—/—

Increments the
local variable of
funi()

Increments the
global variable

Outline

@ Structures

Structure definition

@ In many cases we need to aggregate variables of different
types that are related to the same concept

@ each variable in the structure is called a field
@ the structure is sometimes called record
@ Example

struct student {

char nane[20]; R
char surnane[30]; st LEELI go)s(! tion {
int age; .
int marks[20]; ggﬂg: :)z,i
char address[100]; }: ’
char country[100]; !
b struct position pl, p2, p3;

struct student si;

Accessing data

@ To access a field of a structure, use the dot notation

struct student si;

.p;'intf("r\hrre: %\ n", sl.nane);
printf("Age : %\n", sl.age);

#i ncl ude <math. h>

struct position pl;
pl.x
pl.y

10 » cos(0.74);
10 = sin(0.74);

Array of structures

@ Itis possible to declare array of structures as follows:

struct student ny_students[20];
int i;

ny_student[0].name = "
ny_student[0].age = "

for (i=0; i<20; i++) {
printf("Student %\n", i);
printf("Name: %\n", ny_student[i].nane);
printf("Age: %\n", ny_student[i].age);

Other operations with structures

@ When calling functions, structures are passed by value
o that is, if you modify the parameter, you modify only the
copy, and the original value is not modified

@ Initialization: you can use curly braces to initialize a
structure

struct point {
doubl e x;
doubl e y;
I

struct point x = {0.5, -7.1};

@ You can use normal assignment between structures of the
same type
@ the result is a field-by-field copy

struct point {
doubl e x;
doubl e y;
e

struct point x = {4.1, 5.0};
struct point y;

y =X

Outline

9 Casting

Converting variables between types

@ Sometimes we need to convert a variable between
different types

@ Example:

int a = 5;
doubl e x;

X = a;
Xx =al 2

a=x* 2

Converting variables between types

@ Sometimes we need to convert a variable between
different types

@ Example:

Here we have an implicit conversion from int to dou-
ble; the compiler does not complain

Converting variables between types

@ Sometimes we need to convert a variable between

different types
@ Example:
_— Here we have an implicit conversion from int to dou-
int a=5 ble; the compiler does not complain

doubl e x; L . .
Here we have an implicit conversion from int to dou-

ble. However, the conversion is performed on the
result of the division; therefore the result is 2 and
. not 2.5 as one might expect!

)

X = a;

x
1
Q
-~
N

Q
1

x
*

N

Converting variables between types

@ Sometimes we need to convert a variable between

different types
@ Example:
_— Here we have an implicit conversion from int to dou-
int a=5 ble; the compiler does not complain

doubl e x; L . .
Here we have an implicit conversion from int to dou-

ble. However, the conversion is performed on the
result of the division; therefore the result is 2 and
. not 2.5 as one might expect!

)

X = a;

x
1
Q
-~
N

5 Here we have a conversion from double to int. With
= * e | -

a =X ' this conversion, we might lose in precision, hence
the compiler issues a warning

Explicit casting

@ It is possible to make casting explicit as follows

int a;
doubl e x;

X ((double) a) / 2;

a=(int)(x * 2);

Explicit casting

@ It is possible to make casting explicit as follows

int a;

doubl e Xx;

X = ((double) a) / 2; J
a = (int)(x * 2);

Here the conversion is not explicit. First, a is
converted to double; then, the division is per-
formed (a fractional one); then the result (a dou-
ble) is assigned to x.

Explicit casting

@ It is possible to make casting explicit as follows

int a;

doubl e Xx;

X = ((double) a) / 2; J
a=(int)(x * 2); A

Here the conversion is not explicit. First, a is
converted to double; then, the division is per-
formed (a fractional one); then the result (a dou-
ble) is assigned to x.

Here the compiler does not issue any warning,
because the programmer has made it explicit
that he/she wants to do this operation.

Outline

9 More on input/output: files
@ Exercises

A brief overview

@ In the next slides we will present a quick overview of some
functions to manipulate file

@ These are useful to solve some exercises

@ We will come back to these functions at some point

Files

@ Afile is a sequence of bytes, usually stored on
mass-storage devices

@ We can read and/or write bytes from/to files sequentially
(as in magnetic tapes)
@ File can contais sequences of bytes (binary) or sequence
of characters (text files)

@ There is really no difference: a character is nothing more
than a byte

@ It's the interpretation that counts

File operations

@ Before operating on a file, we must open it
@ then we can operate on it

@ finally we have to close the file when we have done

@ in a C program, an open file is identified by a variable of
type FILE *
@ The * denotes a pointer: we will see next lecture what a
pointer is

Opening a file

@ To open afile, call f open

‘ FILE =fopen(char =filenane, char *node);

@ fil enane and node are strings

@ fil enane is the name of the file (may include the path,
relative or absolute)
@ node is the opening mode
@ "r" forreading or " W' for writing or " &" for writing in
append mode

@ Example: open a file in reading mode

FILE *nyfile;

nyfile = fopen("textfile. txt", "r");

fclose(nyfile);

Reading and writing

@ At this stage, we will consider only text files

@ Youcanusefprintf() andfscan(), similar to the
functions yu have already seen

files/input.c

#i ncl ude <stdio. h>

FILE *nyfile;
int main()
int a, b, c;

char str[lob];
nyfile = fopen("textfile.txt", "r");

fscanf(nyfile, "%l %", &a, &b);
fscanf(nyfile, "%", str);
fscanf(nyfile, "od", &c);

printf("what | have read:\n");
printf("a = % b = %l c =%\n", a b, c);
printf("str = %\n", str);

fprintf and fgets

files/output.c

#i ncl ude <stdio. h>

FILE *nyfilel;
FILE *nyfile2;

int main()

int i, nlines = 0;
char str[255];

nyfilel fopen("textfile.txt", "r")
nyfile2 fopen("copyfile.txt", "w')
fgets(str, 255, nyfilel);

while (!feof (nmyfilel) {
fprintf(nyfile2, "%", str);
nlines++;
fgets (str, 255, nyfilel);

printf("file has been copied!\n");
printf("%l |ines read\n", nlines);

Outline

9 More on input/output: files
@ Exercises

Exercises with files

@ Write a program that reads a file line by line and prints
every line reversed
@ Hint: Write a function that reverts a string

@ Write a function that reads a file and counts the number of
words
@ Hint: two words are separated by spaces, commas “.”, full
stop “ , semicolon “;”, colon “:", question mark “?”,
exclamation mark “!I", dash “-”, brackets. see
http://en. w ki pedi a. org/ wi ki / Punctuati on
@ this is called tokenize

http://en.wikipedia.org/wiki/Punctuation

	Visibility, scope and lifetime
	Structures
	Casting
	More on input/output: files
	Exercises

