Introduction to the C programming language
Lists and Trees

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

March 10, 2010

Outline

9 Searching

9 Lists

e Balanced Binary Trees

@ AVL tree

http://retis.sssup.it/~lipari

Searching

@ Suppose we have an address list.

@ For each person name, we have the address and the
telephone number.
@ All entries are stored in an array.

Class Entry

@ The following class represents an entry

address.hpp

class Entry {
char nane[50] ;
char address[100];
char tel ephone[20];
publi c:
Entry();
Entry(char *s, char *a, char =*t);
char xget_name();
char =*get address();
char =*get tel ephone();
void print();

Class AddressBook

@ The following class represents an address book with
maximum 100 entries

address.hpp

cl ass AddressBook {
Entry array[100];
int num

publi c:
Addr essBook() ;
void insert(Entry e);
Entry search(char =*nane);
void printall();

Implementation of Entry

address.cpp

Entry::Entry()

{
strcpy(name, "");
strcpy(address, "");
strcpy(tel ephone, "");
}
Entry::Entry(char *s, char xa, char =*t)
{

strncpy(name, s, 50);
strncpy(address, a, 100);
strncpy(tel ephone, t, 20);

Implementation of AddressBook

address.cpp

Addr essBook: : Addr essBook()
{}

voi d AddressBook: :insert(Entry e)

{
}

Entry AddressBook: :search(char *nane)

{

nuni 0)

array[numt+] = e;

int i;
Entry null _entry;
for (i=0; i<num i++) {

if (strcnp(nane,
return array[i];

}

return null _entry;

array[i].get_nane()) == 0)

@ Notice that we must go through the entire list if we want to

search for an element

Main

@ Reading from file

mainl.cpp

int main(int argc,

{

char xargv[])

if (argc < 2) {
cout << "Usage:
exit(-1);
}
i fstreamf(argv[1]);
char s[50]; char a[100];

while (!f.eof ()) {
f >> s;
if (f.eof()) break;
f.getline(a, 99);
f.getline(t, 19);
Entry e(s, a, t);
abook. i nsert (e);

}
abook. printall ();

' << argv[0] << "

char t[20];

<filenane> " << endl;

Main - Il

@ Searching names:

mainl.cpp

bool quit = fal se;
while ('quit) {
cout << "Insert Nane to search: "

cin >> s;

if (strcenp(s, "quit") == 0) break;

el se {
Entry e = abook. search(s);
cout << "Result: " << endl;
e.print();

}

Improving the data structures

@ We have two problems here:
@ Fixed size: we can allow only 100 entries. It would be better
to dynamically change the size of the array depending on

the needs of the program
@ Searching takes linear time with the number of entries. Can

we do better than that?
@ Let’s first solve the second problem

Improving search time

@ The idea is to sort the array first

@ Then, start looking in the middle

o If we have found the entry, finish with success

o If the entry is “greater” than the one we look for, continue
looking in the first half

o If the entry is “less” than the one we look for, continue
looking in the second half

@ This is a recursive algorithm!

@ EXxercise:

@ Implementasort () function for the AddressBook class

@ modify the previous “search()” function to implement the
algorithm described above (hint: may need an intermediate
function)

Lists

@ One important data structure is the linked list

@ The nice and important property of a list is the possibility to
insert elements at any point without requiring any complex
operation

Ordered Insertion

@ Problem: suppose we have an ordered array of integers,
from smalles to largest

@ Suppose that we need to insert another number, and that
after insertion the array must still be ordered

@ Solution 1. Insert at the end, then run a sorting algorithm
(i.e. insert sort or bubble sort)

@ Solution 2: Identify where the number has to be inserted,
and move all successive numbers one position forth

@ Both solutions require additional effort to maintain the data
structured ordered

@ Another solution is to have completely different data
structure

Lists

@ A list is a chain of linked elements

hesd ——

3| —+—* 5 > 9 = 10 - null

@ Every element of the list contains the data (in this case an
integer), and a pointer to the following element in the list

List of Addresses

@ We now see how we can use a list to implement an
address book

@ First of all we define a list element

list.hpp

#i ncl ude "address. hpp"

class ListEntry {
Entry entry,
Li stEntry =*next;
public:
ListEntry(Entry e);
void link(ListEntry *next);
Entry get _data();
Li stEntry xget_next();

@ From addr ess. hpp, we reuse the Entry class

List definition

@ Now the class AddressList class

list.hpp

cl ass AddressLi st {
Li stEntry =*head;
public:
Addr essList();
void insert(Entry e);
Entry search(char =*s);
void printall();

@ Notice how similar is the interface with AddressBook

Implementation of ListEntry

list.cpp

ListEntry::ListEntry(Entry e): entry(e), next(0)

{}
void ListEntry::link(ListEntry *n)
{
next = n;
}
Entry ListEntry::get_data()
{
return entry;
}
ListEntry =ListEntry::get_next()
{
return next;
}

Implementation of AddressList

@ Theinsert () operation requires to go through the list until
we find the correct position

list.cpp

Addr essLi st:: AddressList() : head(0)
{}

voi d AddressList::insert(Entry e)

{

ListEntry *le = new ListEntry(e);
ListEntry *p = head;
ListEntry *q = O;
while (p !'= 0) {
if (strcnp(p->get_data().get _nane(), e.get_nane()) > 0) {
q p;
p p- >get _next();

}

el se break;

}

if (q==0) // Insertion at the head
head = |e;

el se g->link(le);

| e->link(p);

Implementation of AddressList

@ Searching and printing

list.cpp
Entry AddressList::search(char =*s)
{
ListEntry *p = head,
Entry null _entry;
while (p !'= 0) {
if (strcnp(p->get_data().get_nane(), s) == 0)
return p->get _data();
el se p = p->get_next();
}
return null _entry;
}
voi d AddressList::printall ()
{
Li stEntry =*p=head;
while (p !'= 0) {
p->get data().print();
p=p- >get _next ();
}
}
Main

@ Almost the same as in AddressBook, except for the type of
the variable abook, and the includes.

main2.cpp

#i nclude "list. hpp"

usi ng nanmespace std,;

Addr essLi st abook;

main2.cpp

bool quit = fal se;
while ('quit) {
cout << "Insert Nanme to search: ";
cin >> s;
if (strcenp(s, "quit") == 0) break;
el se {
Entry e = abook. search(s);
cout << "Result: " << endl;
e.print();

Problems with lists

@ One of the problems with the list is that searching is a O(n)
operation

@ while the previous algorithm on the array was O(log(n))

@ The list is useful if we frequently insert and extract from the
head

@ For example, inside an operating system, the list of
processes (executing programs) may be implemented as a
list ordered by process priority

@ In general, when most of the operations are
inserting/estracting from the headm the list is the simplest
and most effective solution

Data structures so far

@ Stack
@ Insertion/extraction only at/from the top (LIFO)
@ All operations are O(1)
@ Queue (Circular Array)
@ Insertion at tail, extraction from head (FIFO)
@ All operations are O(1)
@ Array (random access)

@ Insertion at any point requires O(n)

o Extraction from any point requires O(n)

@ Sorting requires O(n log(n))

@ Searching (in sorted array) requires O(log(n))

@ List (ordered)

@ Insertion at any point requires O(n)
@ Extraction from any point requires O(1)
@ Searching requires O(n)

More powerful data structures

@ No data structure so far allows:

o Insertion in O(log(n))
@ Searching in O(log(n))

@ Itis important to implement efficienlty such data structures,
because in most application you exactly need to seach the
data structure very efficiently, and insert/remove efficiently

@ On such data structure is the balanced binary tree

Trees

@ A tree is a data structure where each element can have
two children

@ The parent element can be the child of another higher level
element

@ The topmost element is called root

Recursion

@ The tree is a recursive data structure
@ The root node has two subtrees, one on the left and one on

the right
@ Each node can be seen has root of its own subtree

@ Recursive definition : atree can be

@ empty (i.e. contains no nodes)
@ consisting of one root node, plus one left tree and one right

tree
@ The tree is defined by itself!

Searching in a tree

@ Given a node that contains element k, the main idea is:
o to put all elements that are less than k to the left
@ to put all elements that are greater than k to the right
@ If the tree is balanced (i.e. it has approximately the same
number of nodes in the left and in the right subtrees),
searching takes O(log(n))

@ Also, insertion takes O(log(n))
@ However, inserting elements make the tree unbalanced

Example of tree

@ In the following figure we have a tree of integers

Binary Search Tree Example

Tree resulting from the following insertions: 38, 13, 51, 10, 12, 40, B4, 25, 89, 37, 64, 85

s %
N

&
\ \
® &

/

e
&

Tree interface

@ Here is an example of class that implements a simple tree

simpletree.hpp

cl ass AddressTree {
publi c:
Addr essTree();
void insert(Entry e);
Entry search(char =*s);
void print_all();
void print_structure();
private:
TreeEntry =*root;

TreeEntry * _insert(TreeEntry *r, Entry e);
Entry _search(TreeEntry *r, char =*s);

int _get_level (TreeEntry =*r);

void _print_all(TreeEntry =*r);

void _print_level (TreeEntry *r, int |, int n);

Tree implementation - 1

@ The functions insert and search call the internal recursive
versions

simpletree.cpp

Addr essTree: : AddressTree() : root(0)
{}
voi d AddressTree::insert(Entry e)
{
root = _insert(root, e);
}
Entry AddressTree::search(char xs)
{
return _search(root, s);
}

Tree searching

@ Simply looks in the current node, in the left one or in the
right one

simpletree.cpp

Entry AddressTree::_search(TreeEntry *r, char *s)

{
Entry null _entry;
if (r == 0) return null _entry;
else if (strcnp(r->get_data().get_nanme(), s) == 0)

return r->get_data();

else if (strcnp(r->get_data().get_nanme(), s) < 0)
return _search(r->get _left(), s);

else if (strcnp(r->get_data().get_nane(), s) > 0)
return _search(r->get _right(), s);

el se return null _entry;

Tree insertion

@ Interts to the right or to the left, depending on the ordering

simpletree.cpp

TreeEntry xAddressTree:: _insert(TreeEntry *r, Entry e)
{
if (r == 0)
r = new TreeEntry(e);
else if (strcnp(r->get_data().get_nanme(), e.get_nane()) < 0)
r->link_left(_insert(r->get_left(), e));
else if (strcnp(r->get_data().get_nanme(), e.get_nane()) > 0)
r->link_right(_insert(r->get_right(), €e));
else if (strcnp(r->get_data().get_nanme(), e.get_nane()) == 0)
cout << "Elenment already present” << endl;
return r;
}
The main

@ The same as before

maintree.cpp

Addr essTree abook;

int main(int argc, char xargv[])

{
if (argc < 2) {
cout << "Usage: " << argv[0] << " <filename> " << endl;
exit(-1);

ifstreamf(argv[1]);
char s[50]; char a[100]; char t[20];

while (!f.eof ()) {
f >> s;
if (f.eof()) break;
f.getline(a, 99);
f.getline(t, 19);
Entry e(s, a, t);
abook. insert(e);

abook. print_all ();
abook. print_structure();

bool quit = fal se;

Balance

@ Unfortunately, the tree is not balances
@ (see output of maintree on example2.txt)

@ This means that the insertion and search operation do not
necessarily take O(log(n))

@ It is necessary to constantly keep the tree balanced to
achieve good performance

Height

@ The height of a tree is how may pointers | have to follow in
the worst case before reaching a leaves

@ It can be defined recursively;

@ The height of an empty tree is O

@ The height of a tree is equal to the maximum between the
heights of the left and right subtrees plus 1

@ Example: what is the height of this subtree?

Binary Search Tree Example

Tree resulting from the following insertions: 38, 13, 51, 10, 12, 40, 84, 25, 89, 37, 66, 95

@/\
PN
&
Y \ /
@ @

—
o

Balance

@ The difference between the height of the left subtree and
the height of the right subtree is called balance.

@ A tree is said to be balanced if

o the balanceis-1,0o0r 1

@ Both the left and the right subtrees are balanced
@ (again a recursive definition!)
@ Is the tree in the previous slide balanced?

@ What is the balance of the tree obtained by example2.txt?

Rotation

@ When we insert a new element, the tree can become
unbalanced

@ Therefore, we have to re-balance it

@ The operation that we use to balance the tree must
preserve the ordering!

@ The balance can be obtained by rotating a tree

@ A rotate operation charges the structure of the tree so that
the tree becomes balanced after the operation, and the
order is preserved

@ There are many different implementation of the rotation
operation, that produce different types of balanced tree

@ Red-black trees
@ AVL trees
@ etc.

@ We will analyze the AVL tree

L eft-left rotation

@ Suppose the tree with root X is unbalanced to the left (i.e.
balance = —2)

@ In this case, the height of the left subtree (with root Y) is
larger than the height of the right subtree by 2 levels

@ Also, suppose that the left subtree of Y (which has root Z)
is higher than its right subtree

@ We apply a left rotation:

X Y

/ SN

o —C
o e mﬁ

L eft-left rotation

@ What happened? § .
@ Before the rotation, O O
@ suppose that the right YQ/ - ZQ/ \
su_btree of X had / /Q
height h, ZQ % m

@ Y had height h + 2
@ Zhad heighth + 1
@ W had height h

@ After the rotation, Y is the new root

@ X has height h + 1,
@ Z has heighth + 1
@ Also, notice that the order is preserved:

@ Before the rotation, Z <Y <W < X
@ Aftertherotation,Z <Y <W < X

Left-right

@ A different case is when the left subtree has balance +1
@ In such a case we need to perform a left-right rotation

@ Before the rotation, .
@ suppose that the right Q Q

subtree of X had height y / Y / \ X
h, Q — O P
@ Y had height h + 2 z &

o Z had height h + 1 W\)

@ W had height h / \/\/\

@ After the rotation, Y is the new root

@ X has height h + 1,
@ Z has heighth + 1

@ The order is still preserved
Rotations

@ There are 4 possible rotations

o left-left : when the tree is unbalanced to the left and the left
subtree has balance -1

o left-right : when the tree is unbalanced to the left, and the
left subtree has balance +1

o right-left : when the tree is unbalanced to the right, and the
right subtree has balance -1

o right-left : when the tree is unbalanced to the right, and the
right subtree has balance +1

Rotations

Figure: left-left Figure: right-right

Y/Q /\ O\v %xo/o\y

Ny A\ ﬁg\ Ao A
o

Figure: right-left
Figure: left-right

Implementation

@ Now we look at the implementation

avltree.hpp

cl ass AddressTree {
publi c:
Addr essTree();
void insert(Entry e);
Entry search(char xs);
void print_all();
void print_structure();
private:
TreeEntry =*root;

TreeEntry * _insert(TreeEntry *r, Entry e);
Entry _search(TreeEntry *r, char =*s);

int _get_level (TreeEntry =*r);

void print_all(TreeEntry =r);

void _print_level (TreeEntry *r, int |, int n);
TreeEntry = _rotate || (TreeEntry *r);
TreeEntry = _rotate_|r(TreeEntry *r);
TreeEntry * _rotate_rl(TreeEntry xr);
TreeEntry * _rotate_rr(TreeEntry xr);

Rotations (right)

avltree.cpp
TreeEntry * AddressTree:: rotate rr(TreeEntry =*x)
{
TreeEntry *y = x->get _right();
x->link_right(y->get_left());
y->link_left(x);
return vy,
}
TreeEntry * AddressTree:: _rotate_rl(TreeEntry xx)
{
TreeEntry *y = x->get _right();
TreeEntry *z = y->get _left();
X->link_right(z->get _left());
y->link_|eft(z->get_right());
z->link_left(x);
z->link_right(y);
return z;
}

Rotations (left)

avltree.cpp

TreeEntry * AddressTree:: rotate || (TreeEntry =*x)

{
TreeEntry *y = x->get _left();
x->link_left(y->get_right());
y->link_right(x);
return vy,
}
TreeEntry » AddressTree:: _rotate_|r(TreeEntry =*x)
{

TreeEntry =*y
TreeEntry *z

= x->get _left();
= y->get _right();
x->link_left(z->get_right());
y->link_right(z->get_left());
z->link_right(x);
z->link_left(y);

return z;

Height

@ The following function returns the tree level:

avltree.cpp

int AddressTree:: _get |l evel (TreeEntry =r)
{
if (r == 0) return O;
else return (1 + max(_get _level (r->get _left()),
_get _level (r->get_right())));

@ The search remains the same
@ Now we look at the insert

Insertion to the left

avltree.cpp

TreeEntry *AddressTree:: _insert(TreeEntry *r, Entry e)

{
if (r == 0)
r = new TreeEntry(e);

if (I > (rl +1)) {
int 111 _get _level (r->get_left()->get_left());
_get _level (r->get_left()->get_right());

int Irl ;
if (I >1rl)

r = rotate Il(r);
elser = rotate_Ir(r);

else if (strcnp(r->get_data().get_nane(), e.get_nane()) < 0)
/'l insert
r->link _left(_insert(r->get_left(), e));
/'l check bal ance since | inserted to the left, it can be
/'l balanced, or in LL or in LR
int 1l = _get_level (r->get_left());
int rl = get_level(r->get_right());

~=

Insertion to the right

avitree.cpp

r->link right(_insert(r->get _right(), e));

int Il = get level(r->get left());

int rl = get _level(r->get_right());

if (rl > (Il + 1)) {
int rrl = _get_level (r->get_right()->get_right());
int rll = _get_level (r->get_right()->get _left());
if (rrl >7rll) r = rotate_rr(r);
elser = rotate rl(r);

}

}
else if (strcnp(r->get_data().get_name(), e.get_nane()) ==
cout << "El enent already present" << endl;

return r;

else if (strcnp(r->get_data().get _nane(), e.get_nane()) > 0)

0)

~=

	Searching
	Lists
	Balanced Binary Trees
	AVL tree

