
Introduction to the C programming language
Pointers

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

February 11, 2010

http://retis.sssup.it/~lipari

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

Pointers

A pointer is a special type of variable that can hold memory
addresses

Syntax

char c; // a char variable
char *pc; // pointer to char variable
int i; // an integer variable
int *pi; // pointer to an int variable
double d; // double variable
double *pd; // pointer to a double variable

In the declaration phase, the * symbol denotes that the
variable contains the address of a variable of the
corresponding type

Syntax - cont.

A pointer variable may contain the address of another
variable

int i;
int *pi;

pi = &i;

The & operator is used to obtain the address of a variable.
It is called the reference operator

Warning: in C++ a reference is a different thing! Right now,
pay attention to the meaning of this operator in C.

Indirection

The reverse is called indirection operator and it is denoted
by *

int j;
j = *pi; // get the value pointed by pi

*pi = 7; // store a value in the address stored in pi

In the first assignment, j is assigned the value present at
the address pointed by pi.

In the second assignment, the constant 7 is stored in the
location contained in pi

*pi is an indirection, in the sense that is the same as the
variable whose address is in pi

Example

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

Example

pi is assigned the address
of j

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

Example

pi is assigned the address
of j

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

23456

Example

pi is assigned the address
of j

j is assigned the value of
the variable pointed by pi

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

23456

5

Examples
pointers/point1.cpp

int main()
{

int d = 5;
int x = 7;
int *pi;

pi = &x;
cout << "&x = " << &x << endl;
cout << "&d = " << &d << endl;
cout << "pi = " << pi << endl;

cout << "*pi = " << *pi << endl;

//pi = d; // compilation error

d = *pi;

cout << "pi = " << pi << endl;
cout << "x = " << x << endl;
cout << "d = " << d << endl;

}

The commented line is a
syntax error

We are assigning a
variable to a pointer

The programmer
probably forgot a & or
a *

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

The pre-processor

It is time to look in more details at the compilation process
That is, translating from high level C code to low-level
machine code

The step are described below

C file pre−processor compiler object file

C file

linker Exe file

include file

Pre-processor

In this step, the input file is analyzed to process
preprocessor directives
A preprocessor directive starts with symbol #

Example are: #include and #define

After this step, a (temporary) file is created that is then
processed by the compiler

Directives

With the include directive, a file is included in the current
text file

In other words, it is copied and pasted in the place where
the include directive is stated

With the define directive, a symbol is defined
Whenever the preprocessor reads the symbol, it substitutes
it with its definition
It is also possible to create macros

To see the output of the pre-processor, run g++ with -E
option (it will output on the screen)

g++ -E myfile.cpp

An example
preprocessor/main.cpp

#include "myfile.hpp"
#include "yourfile.hpp"

int d;
int a=5;
int b=6;

int main()
{

double c = PI; // pi grego
d = MYCONST; // a constant
a = SUM(b,d); // a macro
return int(a);

}

preprocessor/myfile.hpp

#define MYCONST 76

extern int a, b;

#define SUM(x,y) x+y

preprocessor/yourfile.hpp

#define PI 3.14

extern int d;

An example
preprocessor/main.cpp

#include "myfile.hpp"
#include "yourfile.hpp"

int d;
int a=5;
int b=6;

int main()
{

double c = PI; // pi grego
d = MYCONST; // a constant
a = SUM(b,d); // a macro
return int(a);

}

preprocessor/myfile.hpp

#define MYCONST 76

extern int a, b;

#define SUM(x,y) x+y

preprocessor/yourfile.hpp

#define PI 3.14

extern int d;

preprocessor/main.cpp.post

1 "main.cpp"
1 "<built-in>"
1 "<command-line>"
1 "main.cpp"
1 "myfile.hpp" 1

extern int a, b;
2 "main.cpp" 2
1 "yourfile.hpp" 1

extern int d;
3 "main.cpp" 2

int d;
int a=5;
int b=6;

int main()
{

double c = 3.14;
d = 76;
a = b+d;
return int(a);

}

Macros effects

Pay attention to macros, they can have bad effects

#define SUM(x,y) x+y

int main()
{

int a = 5, b = 6, c;

c = 5 * SUM(a,b);
}

What is the value of variable c?

Some helpful “tricks”
It is possible to define a macro for obtaining the literal
name of a variable:
#define LIT_VAR(x) #x

A complete example: pointers/point2.cpp

#include <iostream>
using namespace std;

#define LIT_VAR(a) #a
#define PVAR(y) cout << LIT_VAR(y) " = " << y << endl

int main()
{

int d = 5;
int x = 7;
int *pi;

pi = &x;

PVAR(d); PVAR(&d);
PVAR(x); PVAR(&x);
PVAR(pi); PVAR(*pi);

d = *pi;

PVAR(pi); PVAR(x);
PVAR(d);

}

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

Arguments of function
In C, arguments are passed by value

With the exception of arrays
However, we can use pointers to pass arguments by
reference
void swap(int *a, int *b)
{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;
}

int main()
{

int x = 1;
int y = 2;

swap(&x, &y);

PVAR(x);
PVAR(y);

}

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

Arrays

An array denotes a set of consecutive locations in memory

In C, the name of an array is seen as a constant pointer to
the first location

Therefore, it can be assigned to a pointer, and used as a
pointer

int array[5] = {1, 2, 4, 6, 8};
int *p;
int d;

p = a;
d = *p; // this expression has value 1

Pointer arithmetic

It is possible to modify a pointer (i.e. the address) by
incrementing/decrementing it

int a[5] = {1, 2, 3, 4, 5};
int *p;
p = a // p now points to the first

// element in the array

p++; // p now points to the second
// element (a[1])

p+=2; // p now points to the fourth
// element (a[3])

Notice that in p++, p is incremented by 4 bytes, because p

is a pointer to integers (and an integer is stored in 4 bytes)

Array and pointers

Array are constant pointers, they cannot be modified

int a[10];
int d;
int *p;

p = &d;

a = p; // compilation error, a cannot be modified

Remember that the name of an array is not a variable, but
rather an address!

It can be used in the right side of an assignment
expression, but not in the left side.

Equivalent syntax

A pointer can be used to access the elements of an array
in different ways:

int a[10];
int *p;

p = a;

*(p+1); // equivalent to a[1]

int i;

*(p+i); // equivalent to a[i]
p[i]; // this is a valid syntax

*(a+i); // this is also valid

In other words, a and p are equivalent also from a syntactic
point o view

Pointer arithmetic - II

The number of bytes involved in a pointer operator depend
on the pointer type
An operation like p++ increments the pointer by

1 byte if p is of type char
2 bytes if p is of type float
4 bytes if p is of type int

To obtain the size of a type, you can use the macro
sizeof()

int a, b;
char c;
double d;

a = sizeof(int); // a is 4 after the assignment
a = sizeof(c); // c is a char, so a is assigned 1

sizeof() must be resolved at compilation time (usually
during preprocessing)

Pointer arithmetic - III
Pointer arithmetic is also applied to user-defined types;

pointers/struct.cpp

#include <iostream>

using namespace std;

struct mystruct {
int a;
double b[5];
char n[10];

};

int main()
{

struct mystruct array[10];

cout << "size of mystruct: " << sizeof(mystruct) << endl;

mystruct *p = array;

cout << "p = " << p << endl;
p++;
cout << "p = " << p << endl;

}

void pointers

In C/C++, the keyword void denotes something without a
type

For example the return value of a functio can be specified
as void, to mean that we are not returning any value

When we want to define a pointer that can point to a
variable of any type, we specify it as a void pointer

void *p;
int d;

p = &d;
p++; // error, cannot do arithmetic

// with a void pointer

Pointers and structures

When using pointer with structures, it is possible to use a
special syntax to access the fields

struct point2D {
double x, y;
int z;

};

point2D vertex;
point2D *pv; // pointer to the structure

pv = &vertex;
(*pv).x; // the following two expressions
p->x; // are equivalent

Therefore, to access a field of the structure through a
pointer, we can use the arrow notation p->x

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

Copying a string (using arrays)
pointers/strcpy.cpp

#include <iostream>
using namespace std;

int strcpy(char *p, char *q)
{

int c = 0;
while (q[c] != 0) p[c] = q[c++];
p[c] = 0;
return c;

}

int main()
{

char name[] = "Lipari";
char copy[10];

strcpy(copy, name);

cout << "name = " << name << endl;
cout << "copy = " << copy << endl;

}

Copying a string, (using pointers)
pointers/strcpy2.cpp

#include <iostream>
using namespace std;

int strcpy(char *p, char *q)
{

int c = 0;
while (*q != 0) {

*(p++) = *(q++); c++;
}

*p = 0;
return c;

}

int main()
{

char name[] = "Lipari";
char copy[10];

strcpy(copy, name);

cout << "name = " << name << endl;
cout << "copy = " << copy << endl;

}

	Pointer syntax
	Preprocessor
	Arguments by reference
	Pointers and arrays
	Examples with strings

