Introduction to C/C++
Data structures in the STL

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

March 18, 2010

Outline

ﬂ Introduction

9 Vector

9 Lists and queues

O Map

e Conclusion

http://retis.sssup.it/~lipari

Standard libraries

@ Until now we have seen
@ The basic of the C/C++ programming language
@ A few data structures
@ During the years, programmers have built sophisticated
libraries implementing data structures in a generic way

@ All the data structures we have seen are available in
standard libraries of C and C++

@ In the next slides, we will have a quick look at the Standard
Template Library (STL) of C++

Templates

@ Templates are a C++ language construct to make a data
structure or an algorithm generic (i.e. independent of the
data type)

o Templates are an advanced programming topic! We will
see today only how to use templates in the STL

@ Template are expressed using angular parenthesis
@ An example:

vector<int> array; /1 a vector of integers
class Entry {
IE

vector<Entry> array; // a vector of Entry

Strings

@ In C/C++, strings are just array of characters

@ Direct manipulation of array of characters is not easy

@ we have to allocate memory,

@ pay attention to length (to avoid overflow)

@ compare or make simple operation (like concatenation)
through functions

@ Inthe STL, aclass stri ng is provided that hides all this
complexity

string a; [/ creates an enpty string
string b("zzz"); // creates a string with content zzz

a = "Pippo "; /| assigns characters to string a

@ The class string (defined in the STL) automatically takes
care of allocating memory (opportunely resizing the string
allocation)

Examples of usage of string

@ You can find a reference to the string class in
http://ww. cpl uspl us. com ref erence/ string/string/

exstring.cpp

int main()
{
string a, c;
string b("Lipari");

a = "G useppe"”;
C - b + n n + a;
cout << ¢ << endl;

int w=c.find("p");
cout << "p at position " << w << endl;

int w2 = c.find("sep");
cout << "sep at position " << w2 << endl;

string sub = c.substr(w, w2-w;
cout << "Substring between wand w2 is ["
<< sub << "]" << endl
if (sub < "Alberto") cout << "Before" << endl;
el se cout << "After" << endl;

http://www.cplusplus.com/reference/string/string/

Variable sized arrays

@ Another problem with plain C is the use of arrays

@ Arrays must have fixed size

o If we want variable size, we must deal with dynamic
memory allocation

@ This may be annoying, so the STL has a class for dynamic
sized arrays, called vect or

vect or <i nt > vec; /1 this is an enpty array

for (int i=0; i<10; i++) /1 allocates nmenory for 10 inte
vec. push_back(i); /1 and initialize them

vec[5] = vec[6] + 10; /1l read and assi gnnent

gers,

Vector example

@ The vector interface can be seen at

http://ww. cpl uspl us. com reference/ stl/vector/

exvector.cpp

{

i nt main()

vect or <string> nanes;

nanes. push_back(" G useppe");
nanes. push_back("El eonora");
nanes. push_back(" Edoar do") ;
nanes. push_back(" Margherita");

for (unsigned i=0; i<nanes.size(); I++)
cout << names[i] << endl;

cout << endl;
names. pop_back();
names. pop_back();

for (unsigned i=0; i<nanes.size(); i++)
cout << nanes[i] << endl;

http://www.cplusplus.com/reference/stl/vector/

Ilterators

@ Sometimes it is necessary to go through a data structure
step by step

@ However, not all data structures identify every element with

an integer index like the array (or the vector)

@ Therefore, the STL provides a generalization of an index,
called iterator

vect or <stri ng> nanes;
vector<string> :iterator i;

i = nanes. begin(); /1 1 now "points" to the first el enen
while (i !'= nanes.end()) { // until the end of the vector
i ++; /1l go to next el enent
}
Example
exvectorit.cpp
int main()
{

vect or <string> nanes;
vector<string> :iterator i;
nanes. push_back(" G useppe");
names. push_back("El eonora");
names. push_back(" Edoar do");
nanes. push_back(" Margherita");

for (i=nanes.begin(); i!=names.end(); i++)
cout << *i << endl

cout << endl;

nanes. pop_back();

nanes. pop_back();

nanes. i nsert (nanes. begi n(), "Edoardo");

for (i=names.begin(); i!=nanmes.end(); i++)

cout << xji << endl

~t

Vector internal implementation

@ The vector is internally implemented as a variable size
array

@ Therefore, internally it allocates and deallocated memory
depending on the current number of element inside

@ However, all elements are sequential in memory

@ In the previous example the i nsert () simply moves all
element one step ahead to make space for the additional
element to be inserted in the first place

@ Similarly, a push_back() may imply a copy of all
elements!

@ Therefore, insertion in a vector is a costly operation which
takes O(n).

Lists

@ The STL also provides the simple linked list we have seen
in the course

@ In the STL, the template parameter indicates the data type

list<int> [|st;
for (int i=0; i<10; i++)
| st. push_back(i);

/'l going through all elenents
list<int> :iterator i = |st.begin();
int sum= 0;
while (i!=lst.end()) {

sum += *|i

i ++;

A complete example

exlist.cpp

int main()

{

|ist< vector<int> > | st;

for (int i=0; i<10; i++) {
vect or <i nt > vec;
for (int j=0; j<5; j++)
vec. push_back((i +1)*j);

| st. push_back(vec);

}

|ist< vector<int> >::iterator k

int count = O;
[/ 1ooks for number 18
for (k=lst.begin(); k!=lst.end(); k++)

for (unsigned i=0; i < (*xk).size(); i++)
if ((*k)[1] == 18) count ++;
cout << "18 has been found " << count << " times" << endl;
}
Complexity

@ As explained in the previous lecture the complexity of
inserting in a ordered list is O(n)

@ However, inserting at the head or at the tail is O(1)

@ Tipically sorting takes less time on ali st than on a
vect or, because in list we only have to swap the pointers,
while in a vector we have to swap the elements

Queue

@ A FIFO queue can be implemented by using a deque
(Double ended queue)

@ The main operations on a deque are push_back,
pop_back, push_front and pop_back

@ They all have complexity O(1)

@ The deque is also the standard underlying implementation
for a st ack

deque<i nt> q;

g. push_front (1);

g. push_back(10);

g. push_front (2);

unsigned n = q.size();

int sum = O;

for (int i=0; i<n; i++) {
sum += q. back();
d. pop_back() ;

Trees

@ Inthe STL, a nap is an associative array

@ An associative array contains pairs <key, val ue>

@ It can be treated as an array where the index may be
anything (the key)

o Internally it is implemented as a balanced binary tree (more
specifically, a red-black tree, which is similar to an AVL)

map<string, string> nanes;

nanes["Lipari"] = "G useppe"

nanes["Ancilotti"] = "Paol 0";
nanes["Buttazzo"] = "G orgio";
nanes["Di Natale"] = "Marco";

if (nanmes["Ancilotti"] == "Paolo") ...

Example

Complexity Table

@ Which container to use?

@ It depends on the typical use in our program
@ The following table can help deciding ...

| container || insert

| inshead | insback | search | sort |
vector O(n) O(n) o(n) O(n) O(n log(n))
list O(n) 0o(1) o) O(n) O(n log(n))
map O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n log(n))

@ Also look here:
o http://ww.cpl uspl us. com reference/stl/

http://www.cplusplus.com/reference/stl/

	Introduction
	Vector
	Lists and queues
	Map
	Conclusion

