
Introduction to C/C++
Data structures in the STL

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 18, 2010

Outline

1 Introduction

2 Vector

3 Lists and queues

4 Map

5 Conclusion

http://retis.sssup.it/~lipari


Standard libraries

Until now we have seen
The basic of the C/C++ programming language
A few data structures

During the years, programmers have built sophisticated
libraries implementing data structures in a generic way

All the data structures we have seen are available in
standard libraries of C and C++

In the next slides, we will have a quick look at the Standard
Template Library (STL) of C++

Templates

Templates are a C++ language construct to make a data
structure or an algorithm generic (i.e. independent of the
data type)

Templates are an advanced programming topic! We will
see today only how to use templates in the STL

Template are expressed using angular parenthesis

An example:
vector<int> array; // a vector of integers

class Entry {
...
};

vector<Entry> array; // a vector of Entry



Strings

In C/C++, strings are just array of characters
Direct manipulation of array of characters is not easy

we have to allocate memory,
pay attention to length (to avoid overflow)
compare or make simple operation (like concatenation)
through functions

In the STL, a class string is provided that hides all this
complexity

string a; // creates an empty string
string b("zzz"); // creates a string with content zzz

a = "Pippo "; // assigns characters to string a

The class string (defined in the STL) automatically takes
care of allocating memory (opportunely resizing the string
allocation)

Examples of usage of string
You can find a reference to the string class in
http://www.cplusplus.com/reference/string/string/

exstring.cpp

int main()
{

string a, c;
string b("Lipari");

a = "Giuseppe";
c = b + " " + a;
cout << c << endl;

int w = c.find("p");
cout << "p at position " << w << endl;

int w2 = c.find("sep");
cout << "sep at position " << w2 << endl;

string sub = c.substr(w, w2-w);
cout << "Substring between w and w2 is ["

<< sub << "]" << endl;
if (sub < "Alberto") cout << "Before" << endl;
else cout << "After" << endl;

}

http://www.cplusplus.com/reference/string/string/


Variable sized arrays

Another problem with plain C is the use of arrays
Arrays must have fixed size
If we want variable size, we must deal with dynamic
memory allocation
This may be annoying, so the STL has a class for dynamic
sized arrays, called vector

vector<int> vec; // this is an empty array
for (int i=0; i<10; i++) // allocates memory for 10 integers,

vec.push_back(i); // and initialize them

vec[5] = vec[6] + 10; // read and assignment

Vector example

The vector interface can be seen at
http://www.cplusplus.com/reference/stl/vector/

exvector.cpp

int main()
{

vector<string> names;
names.push_back("Giuseppe");
names.push_back("Eleonora");
names.push_back("Edoardo");
names.push_back("Margherita");

for (unsigned i=0; i<names.size(); i++)
cout << names[i] << endl;

cout << endl;
names.pop_back();
names.pop_back();

for (unsigned i=0; i<names.size(); i++)
cout << names[i] << endl;

}

http://www.cplusplus.com/reference/stl/vector/


Iterators

Sometimes it is necessary to go through a data structure
step by step

However, not all data structures identify every element with
an integer index like the array (or the vector)

Therefore, the STL provides a generalization of an index,
called iterator

vector<string> names;
vector<string>::iterator i;
...
i = names.begin(); // i now "points" to the first element
while (i != names.end()) { // until the end of the vector

...
i++; // go to next element

}

Example

exvectorit.cpp

int main()
{

vector<string> names;
vector<string>::iterator i;
names.push_back("Giuseppe");
names.push_back("Eleonora");
names.push_back("Edoardo");
names.push_back("Margherita");

for (i=names.begin(); i!=names.end(); i++)
cout << *i << endl;

cout << endl;
names.pop_back();
names.pop_back();

names.insert(names.begin(), "Edoardo");
for (i=names.begin(); i!=names.end(); i++)

cout << *i << endl;
}



Vector internal implementation

The vector is internally implemented as a variable size
array

Therefore, internally it allocates and deallocated memory
depending on the current number of element inside
However, all elements are sequential in memory
In the previous example the insert() simply moves all
element one step ahead to make space for the additional
element to be inserted in the first place
Similarly, a push_back() may imply a copy of all
elements!
Therefore, insertion in a vector is a costly operation which
takes O(n).

Lists

The STL also provides the simple linked list we have seen
in the course

In the STL, the template parameter indicates the data type

list<int> lst;
for (int i=0; i<10; i++)

lst.push_back(i);

// going through all elements
list<int>::iterator i = lst.begin();
int sum = 0;
while (i!=lst.end()) {

sum += *i;
i++;

}



A complete example
exlist.cpp

int main()
{

list< vector<int> > lst;

for (int i=0; i<10; i++) {
vector<int> vec;
for (int j=0; j<5; j++)

vec.push_back((i+1)*j);

lst.push_back(vec);
}
list< vector<int> >::iterator k;

int count = 0;
// looks for number 18
for (k=lst.begin(); k!=lst.end(); k++)

for (unsigned i=0; i < (*k).size(); i++)
if ((*k)[i] == 18) count++;

cout << "18 has been found " << count << " times" << endl;
}

Complexity

As explained in the previous lecture the complexity of
inserting in a ordered list is O(n)

However, inserting at the head or at the tail is O(1)

Tipically sorting takes less time on a list than on a
vector, because in list we only have to swap the pointers,
while in a vector we have to swap the elements



Queue

A FIFO queue can be implemented by using a deque
(Double ended queue)

The main operations on a deque are push_back,
pop_back, push_front and pop_back

They all have complexity O(1)

The deque is also the standard underlying implementation
for a stack

deque<int> q;

q.push_front(1);
q.push_back(10);
q.push_front(2);
unsigned n = q.size();
int sum = 0;
for (int i=0; i<n; i++) {

sum += q.back();
q.pop_back();

}

Trees

In the STL, a map is an associative array
An associative array contains pairs <key, value>
It can be treated as an array where the index may be
anything (the key)
Internally it is implemented as a balanced binary tree (more
specifically, a red-black tree, which is similar to an AVL)

map<string, string> names;
names["Lipari"] = "Giuseppe";
names["Ancilotti"] = "Paolo";
names["Buttazzo"] = "Giorgio";
names["Di Natale"] = "Marco";

if (names["Ancilotti"] == "Paolo") ...



Example

Complexity Table

Which container to use?
It depends on the typical use in our program
The following table can help deciding ...

container insert ins head ins back search sort

vector O(n) O(n) O(n) O(n) O(n log(n))
list O(n) O(1) O(1) O(n) O(n log(n))
map O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n log(n))

Also look here:
http://www.cplusplus.com/reference/stl/

http://www.cplusplus.com/reference/stl/

	Introduction
	Vector
	Lists and queues
	Map
	Conclusion

