Fundamentals of Programming

Pointers

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

February 29, 2012

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 1/39

e Pointer syntax

@ Preprocessor

e Arguments by reference
@ Pointers and arrays

e Examples with strings

@ Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 2/39

http://retis.sssup.it/~lipari

@ A pointer is a special type of variable that can hold memory

addresses
@ Syntax
char c; /1 a char variable
char =*pc; /[l pointer to char variable
int i; /1l an integer variable
int *pi; /] pointer to an int variable
doubl e d; /1 doubl e variabl e
double *pd; // pointer to a double variable

@ In the declaration phase, the » symbol denotes that the variable
contains the address of a variable of the corresponding type

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 4/39

Syntax - cont.

@ A pointer variable may contain the address of another variable

int i;
int *pi;

pi = &;

@ The & operator is used to obtain the address of a variable.
@ It is called the reference operator

@ Warning: in C++ a reference is a different thing! Right now, pay
attention to the meaning of this operator in C.

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 5/39

Indirection

@ The reverse is called indirection operator and it is denoted by *

int j;
j ==*pi; [/ get the value pointed by p

*pi =7, [/ store a value in the address stored in pi

@ In the first assignment, j is assigned the value present at the
address pointed by pi .

@ In the second assignment, the constant 7 is stored in the location
contained in pi

@ »pi Is an indirection, in the sense that is the same as the variable
whose address is in pi

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 6/39

@ pi is assigned the address of
]

@ j is assigned the value of the i 5 23456 <]
variable pointed by pi

23460

23464

23468

23472

pi 23456 23476

j 5 23480

23484

23488

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 7139

pointl.c
int main()
{
int d = 5;
int x = 7;
int *pi;
pi- = & The commented line is a
printf("%\n", &x); syntax error

printf("%\n", &d); ..
ST) o We. are aSS|gn|r_1g a

variable to a pointer
rintf("%\n", *pi);
P : Y @ The programmer

[lpi =d; [/ conpilation error probably forgot a&orarx
d = *pi;
printf("%\n", pi);

printf("%\n", x);
printf("%l\n", d);

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 8/39

The pre-processor

@ It is time to look in more details at the compilation process
@ That is, translating from high level C code to low-level machine code

@ The step are described below

include file lib file
e B\
C file 4—[pre—processoH compiler]—V object file - linker +——» Exe file
&)

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 10/ 39

./examples/05.pointers-examples/point1.c

Pre-processor

@ In this step, the input file is analyzed to process preprocessor
directives
@ A preprocessor directive starts with symbol #
o Example are: #i ncl ude and #def i ne

@ After this step, a (temporary) file is created that is then processed
by the compiler

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 11/39

Directives

@ With the include directive, a file is included in the current text file

@ In other words, it is copied and pasted in the place where the
include directive is stated

@ With the define directive, a symbol is defined
@ Whenever the preprocessor reads the symbol, it substitutes it with
its definition
@ Itis also possible to create macros
@ To see the output of the pre-processor, run gcc with -E option (it
will output on the screen)

gcc -E nyfile.c

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 12 /39

An example

main.c

main.c.post

#i ncl ude "nyfile.h"
#i ncl ude "yourfile.h"

S T 1S
PR R R

int d;
int a=5;
i nt b=6;
int main()
{ # 2
double ¢ = PI; /1 pi grego # 1
d = MYCONST; /] a constant
a = SUM b, d) ; /1 a macro
return (int)a;
}
int
myfile.h int
int
#defi ne MYCONST 76 .
extern int a, b; I nt
#define SUMx,y) x+y {
yourfile.h
}

#define PI 3.14
extern int d;

"mai n.c"
"<built-in>"
"<command- | i ne>"
“mai n.c"
"myfile.h" 1

extern int a, b;

“main.c" 2
"yourfile.h" 1

extern int d;
3 "main.c" 2

o9 Q

5
6,
mai n()

double ¢ = 3.14;
d = 76;

a = b+d;

return (int)a;

G. Lipari (Scuola Superiore Sant’Anna)

Macros effects

Pointers

February 29, 2012

@ Pay attention to macros, they can have bad effects

13/39

#define SUM x,y) x+y
i nt main()

{

c =5=+% SUMa,b);
}

int a=5 b =26, c;

@ What is the value of variable c?

G. Lipari (Scuola Superiore Sant’Anna)

Pointers

February 29, 2012

14/39

./examples/05.pointers-examples/main.c
./examples/05.pointers-examples/myfile.h
./examples/05.pointers-examples/yourfile.h
./examples/05.pointers-examples/main.c.post

Some helpful “tricks”

@ Itis possible to define a macro for obtaining the literal name of a
variable:
#define LI T_VAR(X) #x

A complete example: point2.c

#i ncl ude <stdio. h>

#define LIT_VAR(a) #a
#defi ne PVAR(y) printf("%
#define PPUN(y) printf("%

vd", LIT_VAR(Y),)
%", LIT_VAR(Y), V)

int main()
{
int d
int x
int *pi;

pi = &X;

PVAR(d); PPUN(&d);
PVAR(x); PPUN(&x);
PPUN(pi); PVAR(*pi);
d = *pi;

PPUN(pi); PVAR(X);
PVAR(d) ;

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 15/39

Arguments of function

@ In C, arguments are passed by value
@ With the exception of arrays

@ However, we can use pointers to pass arguments by reference

void swap(int xa, int xb)
{
int tnp;

tnp = =*a,;

*a *p:
*b = tnp;

}

int main()
{
int x
int y

:1,
:2’

swap(&x, &y);

PVAR(X) ;
PVAR(Y) ;

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 17 /39

./examples/05.pointers-examples/point2.c

@ An array denotes a set of consecutive locations in memory

@ In C, the name of an array is seen as a constant pointer to the first
location

@ Therefore, it can be assigned to a pointer, and used as a pointer

int array[5] = {1, 2, 4, 6, 8};

int *p;

int d;

p =4

d = *p; /'l this expression has value 1

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 19/39

Pointer arithmetic

@ It is possible to modify a pointer (i.e. the address) by
incrementing/decrementing it

int a[5] = {1, 2, 3, 4, 5};

int *p;

p = a; /1l p now points to the first
/1l element in the array

pt++; /[l p now points to the second
/1 element (a[l])

p+=2; /1l p now points to the fourth
/1 elenment (a3])

@ Notice that in p++, p is incremented by 4 bytes, because p is a
pointer to integers (and an integer is stored in 4 bytes)

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 20/ 39

Array and pointers

@ Array are constant pointers, they cannot be modified

int a[10];
int d;
int *p;

p = &d;

a p; // conpilation error, a cannot be nodified

@ Remember that the name of an array is not a variable, but rather
an address!

@ It can be used in the right side of an assignment expression, but
not in the left side.

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 21/39

Equivalent syntax

@ A pointer can be used to access the elements of an array in
different ways:

int a[10];

int *p;

p =4

*(p+l); /'l equivalent to a[1]

int i;

*(p+i); /1 equivalent to a[i]
p[i]; /1l this is a valid syntax
*(ati); /1l this is also valid

@ In other words, a and p are equivalent also from a syntactic point o
view

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 22 /39

Pointer arithmetic - |l

@ The number of bytes involved in a pointer operator depend on the
pointer type
@ An operation like p++ increments the pointer by

o 1 byte if p is of type char
@ 2 bytes if p is of type f | oat
@ 4 bytes if p is of type i nt

@ To obtain the size of a type, you can use the macro si zeof ()

int a, b;

char c;

doubl e d;

a =sizeof(int); // ais 4 after the assignnent

a = sizeof(c); /[l ¢cis achar, so a is assigned 1

@ si zeof () must be resolved at compilation time (usually during
preprocessing)

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 23 /39

Pointer arithmetic - Il

@ Pointer arithmetic is also applied to user-defined types;

struct.c

#i ncl ude <stdi o. h>

typedef struct mystruct {
int a;
doubl e b[5];
char n[10];

b

int main()

{
struct nystruct array[10];
printf("size of mystruct: %d\n", sizeof(struct nystruct));
struct nystruct *p = array,
printf("p = %\n", p);
p++;
printf("p = %\n", p);

}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 24/ 39

./examples/05.pointers-examples/struct.c

@ In C/C++, the keyword voi d denotes something without a type
@ For example the return value of a function can be specified as void,
to mean that we are not returning any value
@ When we want to define a pointer that can point to a variable of
any type, we specify it as a void pointer

void *p;

int d;

p = &d;

p++; // error, cannot do arithnetic
/1 with a void pointer

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 25/39

Pointers and structures

@ When using pointers with structures, it is possible to use a special
syntax to access the fields

struct point2D {
doubl e x, vy;
int z;

b

poi nt 2D vert ex;
poi nt 2D *pv; /'l pointer to the structure

pv = &vertex;
(*pv).Xx; [l the follow ng two expressions
p- >X; [l are equival ent

@ Therefore, to access a field of the structure through a pointer, we
can use the arrow notation p- >x

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 26 /39

Copying a string (using arrays)

strcpy.c
#i ncl ude <stdio. h>
int strcpy(char *p, char x=q)
{
int ¢ = 0;
while (gfc] !'=0) p[c] = g[c+t];
plc] = 0O;
return c;
}
int main()
{
char nane[] = "Lipari"
char copy[10];
strcpy(copy, nane);
printf("name = %\n", nane);
printf("copy = %\n", copy);
}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 28 /39

Copying a string, (using pointers)
strcpy2.c
#i ncl ude <stdi o. h>
int strcpy(char *p, char xq)
{
int ¢ = 0;
while (*xq !'= 0) {
*(p++) = x(Qg++); C++;
}
*p = 0;
return c;
}
int main()
{
char nane[] = "Lipari"
char copy[10];
strcpy(copy, nane);
printf("nane = %\n", nane);
printf("copy = %\n", copy);
}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 29/39

./examples/05.pointers-examples/strcpy.c
./examples/05.pointers-examples/strcpy2.c

Memory allocation

@ We have discussed the rules for the lifetime and visibility of
variables

@ Global variables are defined outside of any function. Their lifetime
is the duration of the program: they are created when the program
is loaded in memory, and deleted when the program exits

@ Local variables are defined inside functions or inside code blocks
(delimited by curly braces { and }). Their lifetime is the execution of
the block: they are created before the block starts executing, and
destroyed when the block completes execution

@ Global and local variables are in different memory segments
and are managed in different ways

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 31/39

Memory segments

@ The main data segments of a program are shown below

@ The BSS segment contains
global variables . Itis
divided into two segments,
one for initialised data (i.e.
data that is initialised when
declared), and non-initialised
data.

@ The size of this segment is
statically decided when the
program is loaded in
memory, and can never HEAP <——— Dynamic memory
change during execution

@ The STACK segment STACK <—f— Local variables
contains local variables

@ Itssize is dynamic: it can BSS <——1— Global variables
grow or shrink, depending

Pointers February 29, 2012 32/39

@ Here is an example:

int a=25; // initialised global data
int b; /1 non initialised global data
int f(int i) /1 i, d and s[] are local variables
{ /Il will be created on the stack when the
doubl e d; /'l function f() is invoked
char s[] = "Lipari";
}
int main()
{
int s, z; /1l 1ocal variables, are created on the stack
/'l when the program starts
f(); /[l here f() is invoked, so the stack for f() is created
}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 33/39

@ A Stack is a data structure with two operations
@ push data on top
@ pop data from top
@ The stack is a LIFO (last-in-first-out) data structure

@ The stack memory is managed in the same way as the data
structure

@ When a function is called, all parameters are pushed on to the
stack, together with the local data

@ The set of function parameters, plus return address, plus local
variables is called Stack Frame of the function

@ The CPU internally has two registers:

@ SP is a pointer to the top of the stack
@ BP is a pointer to the current stack frame

@ while the function is working, it uses BP to access local data
@ when the function finishes, all data is popped from the stack

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 34 /39

int f(int i)

{ %
doubl e d; _I
char s[] = "Lipari"; < T L
G i -
} \
int main() \—I
{
int s, z; & I
f(s);

. IP | P

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 35/39

@ We will analyse the stack frame later in the course
@ Right now let’s observe the following things:

@ The stack frame for the previous function starts from parameter i
and ends with the last character of s[]

@ The stack frame depends only on the number and types of
parameters, and number and types of local variables

@ The stack frame can be computed by the compiler, that knows how
to access local variables from their position on the stack

@ For example, to access parameter i in the previous example, the
compiler takes the value of BP and subtracts 4 bytes: BP - 4

@ To access local variable d, the compiler uses BP and adds 4

(skipping IP).

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 36/39

Recursive functions

@ It is possible to write functions that call themselves
@ This is useful for some algorithms
@ Consider the following function to compute the factorial of a

number

int fact(int n) {
int f;
if (n<=0) f = 0;
i f (n::1) it =l
else f = n *» fact(n-1);
return f;

}

@ The function uses itself to compute the value of the factorial
@ What happens on the stack?

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 37 /39

Stack for recursive functions

int fact(int n) {

int f;

if (n<=0) f =0;

if (n::1) f =1;

elsef =nx fact(n-1);

return f;

}

@ First stack frame :

@ Second stack frame P

@ Third stack frame nB:PS

@ Fourth stack frame f f

IP IP

@ f has been computed, return = P

n=4 n=4

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012

Stack frames

@ Every time we call a function we generate a different stack frame

@ Every stack frame corresponds to an instance of the function
@ Every instance has its own variables, different from the other
instances

@ Stack frame is an essential tool of any programming language

@ As we will see later, the stack frame is also essential to implement
the operating system

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 39/39

	Pointer syntax
	Preprocessor
	Arguments by reference
	Pointers and arrays
	Examples with strings
	Stack memory

