
Fundamentals of Programming
Pointers

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

February 29, 2012

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 1 / 39

http://retis.sssup.it/~lipari

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

6 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 2 / 39

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

6 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 3 / 39

Pointers

A pointer is a special type of variable that can hold memory
addresses

Syntax

char c; // a char variable
char *pc; // pointer to char variable
int i; // an integer variable
int *pi; // pointer to an int variable
double d; // double variable
double *pd; // pointer to a double variable

In the declaration phase, the * symbol denotes that the variable
contains the address of a variable of the corresponding type

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 4 / 39

Syntax - cont.

A pointer variable may contain the address of another variable

int i;
int *pi;

pi = &i;

The & operator is used to obtain the address of a variable.
It is called the reference operator

Warning: in C++ a reference is a different thing! Right now, pay
attention to the meaning of this operator in C.

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 5 / 39

Indirection

The reverse is called indirection operator and it is denoted by *

int j;
j = *pi; // get the value pointed by pi

*pi = 7; // store a value in the address stored in pi

In the first assignment, j is assigned the value present at the
address pointed by pi.

In the second assignment, the constant 7 is stored in the location
contained in pi

*pi is an indirection, in the sense that is the same as the variable
whose address is in pi

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 6 / 39

Example

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 7 / 39

Example

pi is assigned the address of
j

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 7 / 39

Example

pi is assigned the address of
j

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

23456

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 7 / 39

Example

pi is assigned the address of
j

j is assigned the value of the
variable pointed by pi

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

23456

5

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 7 / 39

Examples
point1.c

int main()
{

int d = 5;
int x = 7;
int *pi;

pi = &x;

printf("%p\n", &x);
printf("%p\n", &d);
printf("%p\n", pi);

printf("%d\n", *pi);

//pi = d; // compilation error

d = *pi;

printf("%p\n", pi);
printf("%d\n", x);
printf("%d\n", d);

}

The commented line is a
syntax error

We are assigning a
variable to a pointer

The programmer
probably forgot a & or a *

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 8 / 39

./examples/05.pointers-examples/point1.c

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

6 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 9 / 39

The pre-processor

It is time to look in more details at the compilation process
That is, translating from high level C code to low-level machine code

The step are described below

C file pre−processor compiler object file linker Exe file

include file lib file

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 10 / 39

Pre-processor

In this step, the input file is analyzed to process preprocessor
directives
A preprocessor directive starts with symbol #

Example are: #include and #define

After this step, a (temporary) file is created that is then processed
by the compiler

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 11 / 39

Directives

With the include directive, a file is included in the current text file

In other words, it is copied and pasted in the place where the
include directive is stated

With the define directive, a symbol is defined
Whenever the preprocessor reads the symbol, it substitutes it with
its definition
It is also possible to create macros

To see the output of the pre-processor, run gcc with -E option (it
will output on the screen)

gcc -E myfile.c

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 12 / 39

An example

main.c

#include "myfile.h"
#include "yourfile.h"

int d;
int a=5;
int b=6;

int main()
{

double c = PI; // pi grego
d = MYCONST; // a constant
a = SUM(b,d); // a macro
return (int)a;

}

myfile.h

#define MYCONST 76
extern int a, b;
#define SUM(x,y) x+y

yourfile.h

#define PI 3.14
extern int d;

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 13 / 39

./examples/05.pointers-examples/main.c
./examples/05.pointers-examples/myfile.h
./examples/05.pointers-examples/yourfile.h

An example

main.c

#include "myfile.h"
#include "yourfile.h"

int d;
int a=5;
int b=6;

int main()
{

double c = PI; // pi grego
d = MYCONST; // a constant
a = SUM(b,d); // a macro
return (int)a;

}

myfile.h

#define MYCONST 76
extern int a, b;
#define SUM(x,y) x+y

yourfile.h

#define PI 3.14
extern int d;

main.c.post

1 "main.c"
1 "<built-in>"
1 "<command-line>"
1 "main.c"
1 "myfile.h" 1

extern int a, b;
2 "main.c" 2
1 "yourfile.h" 1

extern int d;
3 "main.c" 2

int d;
int a=5;
int b=6;

int main()
{

double c = 3.14;
d = 76;
a = b+d;
return (int)a;

}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 13 / 39

./examples/05.pointers-examples/main.c
./examples/05.pointers-examples/myfile.h
./examples/05.pointers-examples/yourfile.h
./examples/05.pointers-examples/main.c.post

Macros effects

Pay attention to macros, they can have bad effects

#define SUM(x,y) x+y

int main()
{
int a = 5, b = 6, c;

c = 5 * SUM(a,b);
}

What is the value of variable c?

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 14 / 39

Some helpful “tricks”

It is possible to define a macro for obtaining the literal name of a
variable:
#define LIT_VAR(x) #x

A complete example: point2.c

#include <stdio.h>

#define LIT_VAR(a) #a
#define PVAR(y) printf("%s = %d", LIT_VAR(y), y)
#define PPUN(y) printf("%s = %p", LIT_VAR(y), y)

int main()
{

int d = 5;
int x = 7;
int *pi;

pi = &x;

PVAR(d); PPUN(&d);
PVAR(x); PPUN(&x);
PPUN(pi); PVAR(*pi);

d = *pi;

PPUN(pi); PVAR(x);
PVAR(d);

}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 15 / 39

./examples/05.pointers-examples/point2.c

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

6 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 16 / 39

Arguments of function

In C, arguments are passed by value
With the exception of arrays

However, we can use pointers to pass arguments by reference
void swap(int *a, int *b)
{
int tmp;

tmp = *a;

*a = *b;

*b = tmp;
}

int main()
{
int x = 1;
int y = 2;

swap(&x, &y);

PVAR(x);
PVAR(y);

}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 17 / 39

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

6 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 18 / 39

Arrays

An array denotes a set of consecutive locations in memory

In C, the name of an array is seen as a constant pointer to the first
location

Therefore, it can be assigned to a pointer, and used as a pointer

int array[5] = {1, 2, 4, 6, 8};
int *p;
int d;

p = a;
d = *p; // this expression has value 1

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 19 / 39

Pointer arithmetic

It is possible to modify a pointer (i.e. the address) by
incrementing/decrementing it

int a[5] = {1, 2, 3, 4, 5};
int *p;
p = a; // p now points to the first

// element in the array

p++; // p now points to the second
// element (a[1])

p+=2; // p now points to the fourth
// element (a[3])

Notice that in p++, p is incremented by 4 bytes, because p is a
pointer to integers (and an integer is stored in 4 bytes)

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 20 / 39

Array and pointers

Array are constant pointers, they cannot be modified

int a[10];
int d;
int *p;

p = &d;

a = p; // compilation error, a cannot be modified

Remember that the name of an array is not a variable, but rather
an address!

It can be used in the right side of an assignment expression, but
not in the left side.

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 21 / 39

Equivalent syntax

A pointer can be used to access the elements of an array in
different ways:

int a[10];
int *p;

p = a;

*(p+1); // equivalent to a[1]

int i;

*(p+i); // equivalent to a[i]
p[i]; // this is a valid syntax

*(a+i); // this is also valid

In other words, a and p are equivalent also from a syntactic point o
view

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 22 / 39

Pointer arithmetic - II

The number of bytes involved in a pointer operator depend on the
pointer type
An operation like p++ increments the pointer by

1 byte if p is of type char
2 bytes if p is of type float
4 bytes if p is of type int

To obtain the size of a type, you can use the macro sizeof()

int a, b;
char c;
double d;

a = sizeof(int); // a is 4 after the assignment
a = sizeof(c); // c is a char, so a is assigned 1

sizeof() must be resolved at compilation time (usually during
preprocessing)

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 23 / 39

Pointer arithmetic - III

Pointer arithmetic is also applied to user-defined types;

struct.c

#include <stdio.h>

typedef struct mystruct {
int a;
double b[5];
char n[10];

};

int main()
{

struct mystruct array[10];

printf("size of mystruct: %ld\n", sizeof(struct mystruct));

struct mystruct *p = array;

printf("p = %p\n", p);
p++;
printf("p = %p\n", p);

}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 24 / 39

./examples/05.pointers-examples/struct.c

void pointers

In C/C++, the keyword void denotes something without a type
For example the return value of a function can be specified as void,
to mean that we are not returning any value

When we want to define a pointer that can point to a variable of
any type, we specify it as a void pointer

void *p;
int d;

p = &d;
p++; // error, cannot do arithmetic

// with a void pointer

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 25 / 39

Pointers and structures

When using pointers with structures, it is possible to use a special
syntax to access the fields

struct point2D {
double x, y;
int z;

};

point2D vertex;
point2D *pv; // pointer to the structure

pv = &vertex;
(*pv).x; // the following two expressions
p->x; // are equivalent

Therefore, to access a field of the structure through a pointer, we
can use the arrow notation p->x

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 26 / 39

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

6 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 27 / 39

Copying a string (using arrays)

strcpy.c

#include <stdio.h>

int strcpy(char *p, char *q)
{

int c = 0;
while (q[c] != 0) p[c] = q[c++];
p[c] = 0;
return c;

}

int main()
{

char name[] = "Lipari";
char copy[10];

strcpy(copy, name);

printf("name = %s\n", name);
printf("copy = %s\n", copy);

}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 28 / 39

./examples/05.pointers-examples/strcpy.c

Copying a string, (using pointers)

strcpy2.c

#include <stdio.h>

int strcpy(char *p, char *q)
{

int c = 0;
while (*q != 0) {

*(p++) = *(q++); c++;
}

*p = 0;
return c;

}

int main()
{

char name[] = "Lipari";
char copy[10];

strcpy(copy, name);

printf("name = %s\n", name);
printf("copy = %s\n", copy);

}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 29 / 39

./examples/05.pointers-examples/strcpy2.c

Outline

1 Pointer syntax

2 Preprocessor

3 Arguments by reference

4 Pointers and arrays

5 Examples with strings

6 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 30 / 39

Memory allocation

We have discussed the rules for the lifetime and visibility of
variables

Global variables are defined outside of any function. Their lifetime
is the duration of the program: they are created when the program
is loaded in memory, and deleted when the program exits
Local variables are defined inside functions or inside code blocks
(delimited by curly braces { and }). Their lifetime is the execution of
the block: they are created before the block starts executing, and
destroyed when the block completes execution

Global and local variables are in different memory segments ,
and are managed in different ways

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 31 / 39

Memory segments

The main data segments of a program are shown below

The BSS segment contains
global variables . It is
divided into two segments,
one for initialised data (i.e.
data that is initialised when
declared), and non-initialised
data.

The size of this segment is
statically decided when the
program is loaded in
memory, and can never
change during execution

BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 32 / 39

Memory segments

The main data segments of a program are shown below

The STACK segment
contains local variables

Its size is dynamic: it can
grow or shrink, depending
on how many local
variables are in the current
block

BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 32 / 39

Memory segments

The main data segments of a program are shown below

The HEAP segment contains
dynamic memory that is
managed directly by the
programmer (we will see it
later) BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 32 / 39

Example

Here is an example:

int a = 5; // initialised global data
int b; // non initialised global data

int f(int i) // i, d and s[] are local variables
{ // will be created on the stack when the

double d; // function f() is invoked
char s[] = "Lipari";
...

}

int main()
{

int s, z; // local variables, are created on the stack
// when the program starts

f(); // here f() is invoked, so the stack for f() is created
}

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 33 / 39

Stack

A Stack is a data structure with two operations
push data on top
pop data from top

The stack is a LIFO (last-in-first-out) data structure

The stack memory is managed in the same way as the data
structure
When a function is called, all parameters are pushed on to the
stack, together with the local data

The set of function parameters, plus return address, plus local
variables is called Stack Frame of the function

The CPU internally has two registers:
SP is a pointer to the top of the stack
BP is a pointer to the current stack frame

while the function is working, it uses BP to access local data
when the function finishes, all data is popped from the stack

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 34 / 39

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 35 / 39

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 35 / 39

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 35 / 39

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

d

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 35 / 39

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

d
s[0] = ’L’
s[1] = ’i’

...

...

...

...
s[6] = 0

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 35 / 39

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

d
s[0] = ’L’
s[1] = ’i’

...

...

...

...
s[6] = 0

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 35 / 39

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

d
s[0] = ’L’
s[1] = ’i’

...

...

...

...
s[6] = 0

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 35 / 39

Stack frame

We will analyse the stack frame later in the course
Right now let’s observe the following things:

The stack frame for the previous function starts from parameter i
and ends with the last character of s[]
The stack frame depends only on the number and types of
parameters, and number and types of local variables
The stack frame can be computed by the compiler, that knows how
to access local variables from their position on the stack
For example, to access parameter i in the previous example, the
compiler takes the value of BP and subtracts 4 bytes: BP - 4
To access local variable d, the compiler uses BP and adds 4
(skipping IP).

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 36 / 39

Recursive functions

It is possible to write functions that call themselves

This is useful for some algorithms

Consider the following function to compute the factorial of a
number

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

The function uses itself to compute the value of the factorial

What happens on the stack?

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 37 / 39

Stack for recursive functions

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

First stack frame

n = 4
BP
IP
f

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 38 / 39

Stack for recursive functions

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

Second stack frame

n = 4
BP
IP
f

n = 3
BP
IP
f

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 38 / 39

Stack for recursive functions

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

Third stack frame

n = 4
BP
IP
f

n = 3
BP
IP
f

n = 2

IP
BP

f

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 38 / 39

Stack for recursive functions

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

Fourth stack frame

n = 4
BP
IP
f

n = 3
BP
IP
f

n = 2

IP
BP

f

BP
IP

n = 1

f

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 38 / 39

Stack for recursive functions

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

f has been computed, return

n = 4
BP
IP
f

n = 3
BP
IP
f

n = 2

IP
BP

f

BP
IP

n = 1

f = 1

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 38 / 39

Stack for recursive functions

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

f has been computed, return

n = 4
BP
IP
f

n = 3
BP
IP
f

n = 2

IP
BP

BP
IP

n = 1

f = 1

f = 2

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 38 / 39

Stack for recursive functions

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

f has been computed, return

n = 4
BP
IP
f

n = 3
BP
IP

n = 2

IP
BP

BP
IP

n = 1

f = 1

f = 2

f = 6

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 38 / 39

Stack for recursive functions

int fact(int n) {
int f;
if (n <= 0) f = 0;
if (n == 1) f = 1;
else f = n * fact(n-1);
return f;

}

f has been computed, return

n = 4
BP
IP

n = 3
BP
IP

n = 2

IP
BP

BP
IP

n = 1

f = 1

f = 2

f = 6

f = 24

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 38 / 39

Stack frames

Every time we call a function we generate a different stack frame
Every stack frame corresponds to an instance of the function
Every instance has its own variables, different from the other
instances

Stack frame is an essential tool of any programming language

As we will see later, the stack frame is also essential to implement
the operating system

G. Lipari (Scuola Superiore Sant’Anna) Pointers February 29, 2012 39 / 39

	Pointer syntax
	Preprocessor
	Arguments by reference
	Pointers and arrays
	Examples with strings
	Stack memory

