
Fundamentals of Programming
Data structures: Lists

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 21, 2012

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 1 / 33

Outline

1 Data structures

2 Sorting and searching
Interlude: pointer to functions
Searching

3 Lists

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 2 / 33

http://retis.sssup.it/~lipari

Using arrays

The C language provides two simple primitive data structures:
arrays and structures

Structures are for grouping different data relevant to a single
object (e.g. a student, a complex number, a bank account, etc.)

Arrays are for storing multiple instances of the same data (e.g. an
array of integers, of students, of bank accounts, etc.)
Both are treated statically:

When declaring an array, the size of the array must be a constant
known at compile time, because the compiler must compute how
much memory to allocate for the array
If we do not know the size at compile time, we have to resort to an
array created dynamically with malloc

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 4 / 33

Address book

Suppose we want to implement an address book

Each entry in the book will contain information about a person’s
name, address, telephone, etc.

typedef struct abook_entry {
char name[50];
char address[100];
char telephone[20];

} ABOOK_ENTRY;

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 5 / 33

How to store addresses

To store a set of addresses, we could prepare an array with a
maximum number of entries

typedef struct address_book {
ABOOK_ENTRY entries[100];
int num;

} ABOOK;

void abook_init(ABOOK *book);
void abook_insert(ABOOK *book, ABOOK_ENTRY *e);
ABOOK_ENTRY abook_search(ABOOK *book, char *name);
void abook_print(ABOOK *book);

See complete code at
./examples/07.lists-examples/addressmain.c

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 6 / 33

Problems

The problem of this approach is that we don’t know how many
addresses we will need to store

If we need more than 100, then the program fails

If we need much less, then we are wasting memory

A better approach is to re-size the array depending on the number
of elements

Also, most code can be generalised

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 7 / 33

./examples/07.lists-examples/addressmain.c

Vector of pointers

Let us define a generic vector of pointers

typedef struct vector_ptr {
void **array;
int num_elem;
int array_size;

} VECTOR_PTR;

void vptr_init(VECTOR_PTR *v);
void vptr_push_back(VECTOR_PTR *v, void *elem);
void * vptr_pop_back(VECTOR_PTR *v);
void * vptr_elem_at(VECTOR_PTR *v, int i);
int vptr_mem_size(VECTOR_PTR *v);
int vptr_num_elem(VECTOR_PTR *v);

Pointer to pointer to void!

Array is a pointer to an array of pointers to void

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 8 / 33

Interface

Notice how we define an interface, and we access the data
structure only through functions

we say that vector_ptr is an opaque data structure, because
the user should access the structure only through functions and
never directly access the data fields

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 9 / 33

Enlarging

vector.c

static void vptr_enlarge(VECTOR_PTR *v)
{

if (v->array_size == 0) vptr_init(v);
else v->array_size *= 2;
void **tmp = malloc(v->array_size * sizeof(void *));
memcpy(tmp, v->array, v->num_elem * sizeof(void *));
free(v->array);
v->array = tmp;
return;

}

void vptr_push_back(VECTOR_PTR *v, void *elem)
{

if (v->num_elem == v->array_size) vptr_enlarge(v);
v->array[v->num_elem++] = elem;
return;

}

void * vptr_pop_back(VECTOR_PTR *v)
{

if (v->num_elem == 0) return 0;
else return v->array[--v->num_elem];

}

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 10 / 33

Exercises

An example of usage of the data structure can be found in
./examples/07.lists-examples/vector-ptr-main.c

As an exercise, create a similar data structure by storing copies of
objects instead of pointers
Advantage:

we can copy an entire data structure;
we can operate on copies without modifying the original

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 11 / 33

./examples/07.lists-examples/vector.c
./examples/07.lists-examples/vector-ptr-main.c

Searching

Searching the data structure takes linear time in the number of
elements.
We could improve is we keep the data structure sorted according
to field on which we want to search

If we want to search by name, we should order alphabetically by
name

Then, we apply binary search
start looking in the middle
If we have found the entry, finish with success
If the entry is “greater” than the one we look for, continue looking in
the first half
If the entry is “less” than the one we look for, continue looking in the
second half

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 13 / 33

Sorting

There are many algorithms for sorting
Insertion, Selection, Bubble, Shell, Merge, Heap, Quicksort, etc.

A good summary is here
http://www.sorting-algorithms.com/

The most popular is quicksort, a very good compromise in
efficiency in many different cases

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 14 / 33

http://www.sorting-algorithms.com/

Exercise

Implement the quicksort and bubblesort algorithms for integers

Compare their performance on randomly generated arrays

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 15 / 33

Generic sorting

Now suppose we want to implement an address book using the
vector of pointers we just provided
We also want to sort the array, and apply binary search

We could write our own sorting algorithm (e.g. quicksort)
However, the sorting algorithm is always the same; we don’t want to
rewrite it from scratch every time we need to sort something
therefore, the standard c library provides a quicksort algorithm
already implemented

void qsort (void *array, size_t count,
size_t size, cmp_fn_t compare);

where cmp_fn_t is the type of the compare function

int cmp_fn_t (const void *, const void *);

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 16 / 33

Pointers to functions

In C it is possible to define a pointer to a function

The syntax is a little strange, pay attention:

void (*pf1)(int);

int (*pf2)(double, double);

char* (*pf3)(char*);

Variable pf1 is a pointer to a func-
tion that takes an integer and re-
turns nothing (void)

Variable pf2 is a pointer to a func-
tion that takes two doubles and re-
turns an integer

Variable pf3 is a pointer to a func-
tion that takes a pointer to char and
returns a pointer to char

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 18 / 33

Other examples

How to use pointers to functions

typedef int (cmp_fn_t)(void *, void *);

int myfun(void *a, void *b);
cmp_fn_t pf = myfun;

int x, y;
pf(&x, &y);

Defines cmp_fn_t as the type of
pointer to function that takes two
pointers to void and returns an in-
teger

pf is a variable that points to myfun

calls myfun by passing the ad-
dress of x and y

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 19 / 33

Using qsort

Using qsort with integers:

int cmp_int(const void *x, const void *y)
{

return *((int *)x) > *((int *)y);
}
int main() {

int arrayint[] = {4, 5, 6, 1, 2, 3, 0, 9, 7, 8};
...
qsort(arrayint, 10, sizeof(int), cmp_int);
...

}

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 20 / 33

Using qsort with strings

Using qsort with array of strings

int cmp_str(const void *x, const void *y)
{

const char **p = (const char **)x;
const char **q = (const char **)y;

return strcmp(*p, *q);
}

int main() {
char *array[] = {"ABC", "ZGF", "HLK", "SDF", "PLM", "BSD",

"KKK", "JFL", "VMZ", "CDA"};
...
qsort(array, 10, sizeof(char *), cmp_str);
...

}

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 21 / 33

Binary search

Also binary search is a well-established algorithm, so it can be
generalised

void * bsearch (const void *key, const void *array,
size_t count, size_t size,
comparison_fn_t compare);

key is the pointer to the element to search

The comparison function should return -1 , 0 or 1 if the key is less
than, equal to or greater than the element in the array

You have to be particularly careful with strings (as always)

see ./examples/07.lists-examples/stringsort.c

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 23 / 33

Exercise

Continue the addressbook exercise
Implement sorting and searching by name
Also implement sorting and searching by address using a second
vector of pointers
If you use a second vector, how it is possible to perform addition
and removal of elements? (assume unique keys)

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 24 / 33

./examples/07.lists-examples/stringsort.c

Lists

With vector we can efficiently search and sort

However, there are many cases where other data structures are
more efficient
for example, when we have frequent additions and deletions of
elements in the middle

Adding an element and then sort has complexity O(n2) or
O(n log n)
Removing an element has always O(n)
Searching has O(log n) (if ordered)

The list data structure can have some advantages over vector
sometimes

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 26 / 33

Ordered Insertion

Problem: suppose we have an ordered array of integers, from
smalles to largest
Suppose that we need to insert another number, and that after
insertion the array must still be ordered

Solution 1: Insert at the end, then run a sorting algorithm (i.e.
insert sort or bubble sort)
Solution 2: Identify where the number has to be inserted, and
move all successive numbers one position forth

Both solutions require additional effort to maintain the data
structured ordered

Another solution is to have completely different data structure

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 27 / 33

Lists

A linked list is a collection of data structures, each one contains a
pointer to the next one

head

null10953

Every element of the list contains the data (in this case an
integer), and a pointer to the following element in the list

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 28 / 33

List interface

list.h

#ifndef __LIST_H__
#define __LIST_H__

typedef struct l_node {
int dato;
struct l_node *next;

} LNODE;

typedef struct List {
LNODE *head;
int nelem;

} LIST;

void list_init(LIST *l);
void list_insert_h(LIST *l, int d);
void list_insert_t(LIST *l, int d);
int list_extract_h(LIST *l);
int list_extract_t(LIST *l);
void list_print(LIST *l);

#endif

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 29 / 33

./examples/07.lists-examples/list.h

Implementation

list.c

void list_insert_h(LIST *l, int d)
{

LNODE *p = (LNODE *)malloc(sizeof(LNODE));
p->dato = d;
p->next = l->head;
l->head = p;

}

void list_insert_t(LIST *l, int d)
{

LNODE *q = (LNODE *)malloc(sizeof(LNODE));
q->dato = d;
q->next = 0;

LNODE *p = l->head;
// caso particolare: lista vuota
if (p == 0) l->head = q;
else {

// scorri fino all’ultimo elemento
while (p->next != 0) p = p->next;
// collega il nuovo elemento
p->next = q;

}
}

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 30 / 33

Problems with lists

One of the problems with the list is that searching is a O(n)
operation

while the previous algorithm on the array was O(log(n))

The list is useful if we frequently insert and extract from the head
For example, inside an operating system, the list of processes
(executing programs) may be implemented as a list ordered by
process priority
In general, when most of the operations are inserting/estracting
from the headm the list is the simplest and most effective solution

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 31 / 33

./examples/07.lists-examples/list.c

Data structures so far

Stack
Insertion/extraction only at/from the top (LIFO)
All operations are O(1)

Queue (Circular Array)
Insertion at tail, extraction from head (FIFO)
All operations are O(1)

Array (random access)
Insertion at any point requires O(n)
Extraction from any point requires O(n)
Sorting requires O(n log(n))
Searching (in sorted array) requires O(log(n))

List (ordered)
Insertion at any point requires O(n)
Extraction from any point requires O(1)
Searching requires O(n)

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 32 / 33

Exercise

Implement a stack, using a list as a reference implementation

Implement AddressBook as a list

Implement a double-linked list (with pointers to go back and forth)

Implement a method to visit a list in order (use the visitor pattern)

G. Lipari (Scuola Superiore Sant’Anna) Lists March 21, 2012 33 / 33

	Data structures
	Sorting and searching
	Interlude: pointer to functions
	Searching

	Lists

