
Fundamentals of Programming
Data structures: tree and heap

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 27, 2012

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 1 / 33

http://retis.sssup.it/~lipari


Outline

1 Trees
Binary trees

2 AVL tree

3 Heap

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 2 / 33



Outline

1 Trees
Binary trees

2 AVL tree

3 Heap

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 3 / 33



Representing hierarchies

One important data structure is the tree
In a List, nodes are connected with each other in a sequence
In a tree, nodes are connected in a hierarchy

A Tree consists of a
root node ,
and a set of children nodes,
each child node can be the root of a sub-tree , or a leaf node if it
has no children

A typical example of tree is the organisation of a file system into
directories

Files are leaf nodes
directories are parent nodes

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 4 / 33



Trees in graph theory

In graph theory, a tree is a special kind of graph:
there must be a simple (unique) path between any two nodes

4

1
2

3

5

6

Any node can be root!

This is true for any tree: but
picking a node as root, you
have a different structure

Of course, the meaning
may change (depending on
what is represented)
A rooted tree is a data
structure with one specific
root

here, we are only
interested to rooted
trees

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 5 / 33



Representing a tree

First, we need to represent a node
the node contains the data field, plus a list of children nodes

struct TreeNode {
void *pdata;
LIST children;

};

TREE_NODE *treenode_create(void *data);

typedef struct TreeStruct {
TreeNode *root;

} TREE;

void tree_init(TREE *t);
...

The list contains point-
ers to TREE_NODE

Creates a TREE_NODE

Initialises a TREE

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 6 / 33



Outline

1 Trees
Binary trees

2 AVL tree

3 Heap

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 7 / 33



Binary trees

A binary tree is a data structure where each node can have at
most two children

8

5

9 12

10

2 6

Binary trees are mostly used for
Representing binary relationships (i.e. arithmetic expressions,
simple languages with binary operators, etc.)
Implement search trees

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 8 / 33



Binary trees definitions

The depth of a node is the length of the path from the root to the
node

The depth (or height ) of a tree is the length of the path from the
root to the deepest node in the tree

Siblings are nodes that share the same parent node

A complete binary tree is a binary tree in which every level,
except possibly the last, is completely filled, and all nodes are as
far left as possible
A balanced binary tree is commonly defined as a binary tree in
which the depth of the two subtrees of every node never differ by
more than 1

other definitions are possible, depending on the maximum depth
difference we want to allow

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 9 / 33



Searching in a binary tree

Given a node that contains element k , the main idea is:
insert all elements that are less than k to the left
insert all other elements to the right

If the tree is balanced (i.e. it has approximately the same number
of nodes in the left and in the right subtrees), searching takes
O(log(n))
Also, insertion takes O(log(n))

However, as we insert new elements, the tree may become
unbalanced

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 10 / 33



Example of binary tree

In the following figure we have a tree of integers

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 11 / 33



Exercises

Implement a binary tree of integers, without balancement

Test the algorithm for insertion by printing the tree in-order

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 12 / 33



Tree of integers

btree-int.h

typedef struct btree_node {
int dato;
struct btree_node *left;
struct btree_node *right;

} BNODE;

typedef struct btree_int {
BNODE *root;

} BTREE_INT;

void btree_init(BTREE_INT *bt);
void btree_insert(BTREE_INT *bt, int d);
int btree_search(BTREE_INT *bt, int dato);
void btree_print_in_order(BTREE_INT *bt);

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 13 / 33

./examples/08.trees-examples/btree-int.h


Insertion and search
btree-int.c

void __insert(BNODE *node, BNODE *p)
{

if (p->dato < node->dato) { // to left
if (node->left == 0) node->left = p;
else __insert(node->left, p);

}
else if (p->dato == node->dato) {

free(p);
printf("Element already present!\n");

}
else { // to right

if (node->right == 0) node->right = p;
else __insert(node->right, p);

}
}

btree-int.c

int __search(BNODE *node, int dato)
{

if (node == 0) return 0;

if (node->dato == dato)
return 1;

else if (dato < node->dato)
return __search(node->left, dato);

else return __search(node->right, dato);
}

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 14 / 33

./examples/08.trees-examples/btree-int.c
./examples/08.trees-examples/btree-int.c


Visiting a tree

There are two ways of listing the contents of a tree
Depth-first

Pre-order: first the root node is visited, then the left sub-tree, then
the right sub-tree
Post-order: first the left sub-tree is visited, then the right sub-tree,
then the root node
In-order: first the left sub-tree is visited, then the root node, then the
right sub-tree

Breadth first
First the root node is visited; then all the children; then all the
children of the children; and so on

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 15 / 33



Example

A

B

C D

E

F G

Breadth first: A B E C D F G

Pre-order: A B C D E F G

Post-order: C D B E F G E A

In-order: C B D A F E G

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 16 / 33



Visiting in order

btree-int.c

void __in_order(BNODE *node)
{

if (node == 0) return;
else {

__in_order(node->left);
printf("%d, ", node->dato);
__in_order(node->right);

}
}

For pre-order and post-order, it is sufficient to change the order in
which the print is done

Is it possible to do it iteratively rather than recursively?

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 17 / 33

./examples/08.trees-examples/btree-int.c


Outline

1 Trees
Binary trees

2 AVL tree

3 Heap

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 18 / 33



Height

The height of a tree is how may pointers I have to follow in the
worst case before reaching a leaves
It can be defined recursively;

The height of an empty tree is 0
The height of a tree is equal to the maximum between the heights
of the left and right subtrees plus 1

Example: what is the height of this subtree?

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 19 / 33



Balance

The difference between the height of the left subtree and the
height of the right subtree is called balance.
A tree is said to be balanced if

the balance is -1, 0 or 1
Both the left and the right subtrees are balanced

(again a recursive definition!)

Is the tree in the previous slide balanced?

What is the balance of the tree obtained by example2.txt?

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 20 / 33



Rotation

When we insert a new element, the tree can become unbalanced

Therefore, we have to re-balance it

The operation that we use to balance the tree must preserve the
ordering!
The balance can be obtained by rotating a tree

A rotate operation charges the structure of the tree so that the tree
becomes balanced after the operation, and the order is preserved

There are many different implementation of the rotation operation,
that produce different types of balanced tree

Red-black trees
AVL trees
etc.

We will analyze the AVL tree

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 21 / 33



Left-left rotation

Suppose the tree with root X is unbalanced to the left (i.e. balance
= −2)

In this case, the height of the left subtree (with root Y) is larger than
the height of the right subtree by 2 levels

Also, suppose that the left subtree of Y (which has root Z) is
higher than its right subtree

We apply a left rotation:

W

Y

X

Z

X

Y

Z

W

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 22 / 33



Left-left rotation

What happened?
Before the rotation,

suppose that the right
subtree of X had height h,
Y had height h + 2
Z had height h + 1
W had height h

W

Y

X

Z

X

Y

Z

W

After the rotation, Y is the new root

X has height h + 1,
Z has height h + 1

Also, notice that the order is preserved:
Before the rotation, Z < Y < W < X
After the rotation, Z < Y < W < X

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 23 / 33



Left-right

A different case is when the left subtree has balance +1

In such a case we need to perform a left-right rotation

Before the rotation,
suppose that the right
subtree of X had height h,
Y had height h + 2
Z had height h + 1
W had height h

Y

X

X

W

Z

T

W T

Y

Z

After the rotation, Y is the new root
X has height h + 1,
Z has height h + 1

The order is still preserved

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 24 / 33



Rotations

There are 4 possible rotations
left-left : when the tree is unbalanced to the left and the left subtree
has balance -1
left-right : when the tree is unbalanced to the left, and the left
subtree has balance +1
right-left : when the tree is unbalanced to the right, and the right
subtree has balance -1
right-left : when the tree is unbalanced to the right, and the right
subtree has balance +1

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 25 / 33



Rotations

W

Y

X

Z

X

Y

Z

W

Figure: left-left

Y

X

X

W

Z

T

W T

Y

Z

Figure: left-right

Y

W

Y

X

W

Z

ZX

Figure: right-right

W T

Z

Y

X

Z

W T

X Y

Figure: right-left



Outline

1 Trees
Binary trees

2 AVL tree

3 Heap

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 27 / 33



Heap

An heap is a data structure that is used mainly for implementing
priority queues
A heap is a binary tree in which, for each node A, the value stored
in the node is always greater than the values stored in the childen
The data structure is also called max-heap (or min-heap if we
require that the node be less than its children)

Figure: Example of max-heap
G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 28 / 33



Properties

Another property of max-heap is the fact that the heap is “full” in
all its levels except maybe the last one
Also, on the last level, all nodes are present from left to rightm
without holes

Figure: All nodes are full from left to right

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 29 / 33



Operations

The most important operations you can do on a heap are:
Insert an element in a ordered fashion
Read the top element
Extract the top element

An heap is used mainly for sorted data structures in which you
need to quickly know the maximum element

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 30 / 33



Insertion

To insert an element, we proceed in two steps
First the element is inserted in the first free position in the tree
Then, by using a procedure called heapify, the node is moved to its
correct position by swapping elements

Suppose we want to insert element 15 in the heap below

Step 1 Step 2 Step 3

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 31 / 33



Deleting

For deleting an element, we proceed in a similar way
We first remove the top most element, and we substitute it with the
last element in the heap
Then, we move down the element to its correct position by a
sequence of swaps

Suppose that we remove the top element in the heap below. We
substitute it with the last element (4)

Step 1 Step 2

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 32 / 33



Heap implementation

The heap can be efficiently implemented with an array

The root node is stored at index 0 of the array
Given a node at index i :

its left child can be stored at 2i + 1
its right child can be stored at 2i + 2

the parent of node j is at
⌊

j−1
2

⌋

Figure: Efficently storing a heap in an array

G. Lipari (Scuola Superiore Sant’Anna) Tree and Heap March 27, 2012 33 / 33


	Trees
	Binary trees

	AVL tree
	Heap

