# Fundamentals of Programming

Data structures: tree and heap

Giuseppe Lipari

http://retis.sssup.it/~lipari

Scuola Superiore Sant'Anna – Pisa

March 27, 2012

## **Outline**

- Trees
  - Binary trees

- 2 AVL tree
- 3 Heap

## **Outline**

- Trees
  - Binary trees

- 2 AVL tree
- 3 Heap

# Representing hierarchies

- One important data structure is the tree
  - In a List, nodes are connected with each other in a sequence
  - In a tree, nodes are connected in a hierarchy
- A Tree consists of a
  - root node,
  - and a set of children nodes,
  - each child node can be the root of a sub-tree, or a leaf node if it has no children
- A typical example of tree is the organisation of a file system into directories
  - Files are leaf nodes
  - directories are parent nodes

# Trees in graph theory

- In graph theory, a tree is a special kind of graph:
  - there must be a simple (unique) path between any two nodes



- Any node can be root!
- This is true for any tree: but picking a node as root, you have a different structure
- Of course, the meaning may change (depending on what is represented)
- A rooted tree is a data structure with one specific root
  - here, we are only interested to rooted trees

# Representing a tree

- First, we need to represent a node
  - the node contains the data field, plus a list of children nodes

```
struct TreeNode {
    void *pdata;
    LIST children;
                                                   The list contains point-
                                                   ers to TREE NODE
TREE NODE *treenode create(void *data);
                                                   Creates a TREE_NODE
typedef struct TreeStruct {
    TreeNode *root;
                                                   Initialises a TREE
  TREE;
void tree init(TREE *t);
```

## **Outline**

- Trees
  - Binary trees
- 2 AVL tree
- 3 Heap

# Binary trees

 A binary tree is a data structure where each node can have at most two children



- Binary trees are mostly used for
  - Representing binary relationships (i.e. arithmetic expressions, simple languages with binary operators, etc.)
  - Implement search trees

# Binary trees definitions

- The depth of a node is the length of the path from the root to the node
- The depth (or height) of a tree is the length of the path from the root to the deepest node in the tree
- Siblings are nodes that share the same parent node
- A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible
- A balanced binary tree is commonly defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1
  - other definitions are possible, depending on the maximum depth difference we want to allow

# Searching in a binary tree

- Given a node that contains element k, the main idea is:
  - insert all elements that are less than k to the left
  - insert all other elements to the right
- If the tree is balanced (i.e. it has approximately the same number of nodes in the left and in the right subtrees), searching takes O(log(n))
- Also, insertion takes O(log(n))
  - However, as we insert new elements, the tree may become unbalanced

# Example of binary tree

In the following figure we have a tree of integers

## Binary Search Tree Example

Tree resulting from the following insertions: 38, 13, 51, 10, 12, 40, 84, 25, 89, 37, 66, 95



### **Exercises**

- Implement a binary tree of integers, without balancement
- Test the algorithm for insertion by printing the tree in-order

# Tree of integers

btree-int.h

```
typedef struct btree node {
    int dato:
    struct btree node *left;
    struct btree node *right;
 BNODE;
typedef struct btree_int {
    BNODE *root;
} BTREE INT;
void btree_init(BTREE_INT *bt);
void btree insert(BTREE INT *bt, int d);
int btree search(BTREE INT *bt, int dato);
void btree print in order(BTREE INT *bt);
```

### Insertion and search

btree-int.c

```
void __insert(BNODE *node, BNODE *p)
{
    if (p->dato < node->dato) { // to left
        if (node->left == 0) node->left = p;
        else __insert(node->left, p);
    }
    else if (p->dato == node->dato) {
        free(p);
        printf("Element already present!\n");
    }
    else { // to right
        if (node->right == 0) node->right = p;
        else __insert(node->right, p);
    }
}
```

btree-int.c

```
int __search(BNODE *node, int dato)
{
    if (node == 0) return 0;

    if (node->dato == dato)
        return 1;
    else if (dato < node->dato)
        return __search(node->left, dato);
    else return __search(node->right, dato);
}
```

# Visiting a tree

There are two ways of listing the contents of a tree

### Depth-first

- Pre-order: first the root node is visited, then the left sub-tree, then the right sub-tree
- Post-order: first the left sub-tree is visited, then the right sub-tree, then the root node
- In-order: first the left sub-tree is visited, then the root node, then the right sub-tree

### Breadth first

 First the root node is visited; then all the children; then all the children of the children; and so on

# Example



- Breadth first: A B E C D F G
- Pre-order: A B C D E F G
- Post-order: C D B E F G E A
- In-order: C B D A F E G

# Visiting in order

#### btree-int.c

```
void __in_order(BNODE *node)
{
    if (node == 0) return;
    else {
        __in_order(node->left);
        printf("%d, ", node->dato);
        __in_order(node->right);
    }
}
```

- For pre-order and post-order, it is sufficient to change the order in which the print is done
- Is it possible to do it iteratively rather than recursively?

## **Outline**

- 1 Trees
  - Binary trees

- 2 AVL tree
- 3 Heap

# Height

- The height of a tree is how may pointers I have to follow in the worst case before reaching a leaves
- It can be defined recursively;
  - The height of an empty tree is 0
  - The height of a tree is equal to the maximum between the heights of the left and right subtrees plus 1
- Example: what is the height of this subtree?

### Binary Search Tree Example

Tree resulting from the following insertions: 38, 13, 51, 10, 12, 40, 84, 25, 89, 37, 66, 95



### **Balance**

- The difference between the height of the left subtree and the height of the right subtree is called balance.
- A tree is said to be balanced if
  - the balance is -1, 0 or 1
  - Both the left and the right subtrees are balanced
- (again a recursive definition!)
- Is the tree in the previous slide balanced?
- What is the balance of the tree obtained by example2.txt?

### Rotation

- When we insert a new element, the tree can become unbalanced
- Therefore, we have to re-balance it
- The operation that we use to balance the tree must preserve the ordering!
- The balance can be obtained by rotating a tree
  - A rotate operation charges the structure of the tree so that the tree becomes balanced after the operation, and the order is preserved
- There are many different implementation of the rotation operation, that produce different types of balanced tree
  - Red-black trees
  - AVL trees
  - etc.
- We will analyze the AVL tree

### Left-left rotation

- Suppose the tree with root X is unbalanced to the left (i.e. balance = -2)
  - In this case, the height of the left subtree (with root Y) is larger than the height of the right subtree by 2 levels
- Also, suppose that the left subtree of Y (which has root Z) is higher than its right subtree
- We apply a *left rotation*:



### Left-left rotation

- What happened?
  - Before the rotation,
    - suppose that the right subtree of X had height h,
    - Y had height h + 2
    - Z had height h + 1
    - W had height h



- After the rotation, Y is the new root
  - X has height h + 1,
  - Z has height h + 1
- Also, notice that the order is preserved:
  - Before the rotation, Z < Y < W < X</li>
  - After the rotation, Z < Y < W < X

# Left-right

- A different case is when the left subtree has balance +1
- In such a case we need to perform a left-right rotation
- Before the rotation,
  - suppose that the right subtree of X had height h,
  - Y had height h + 2
  - Z had height h + 1
  - W had height h



- After the rotation, Y is the new root
  - X has height h + 1,
  - Z has height h + 1
- The order is still preserved

### Rotations

- There are 4 possible rotations
  - left-left: when the tree is unbalanced to the left and the left subtree has balance -1
  - left-right: when the tree is unbalanced to the left, and the left subtree has balance +1
  - right-left: when the tree is unbalanced to the right, and the right subtree has balance -1
  - right-left: when the tree is unbalanced to the right, and the right subtree has balance +1

# Rotations









## **Outline**

- 1 Trees
  - Binary trees
- AVL tree
- 3 Heap

# Heap

- An heap is a data structure that is used mainly for implementing priority queues
- A heap is a binary tree in which, for each node A, the value stored in the node is always greater than the values stored in the childen
- The data structure is also called max-heap (or min-heap if we require that the node be less than its children)



Figure: Example of max-heap

# **Properties**

- Another property of max-heap is the fact that the heap is "full" in all its levels except maybe the last one
- Also, on the last level, all nodes are present from left to rightm without holes



Figure: All nodes are full from left to right

# **Operations**

- The most important operations you can do on a heap are:
  - Insert an element in a ordered fashion
  - Read the top element
  - Extract the top element
- An heap is used mainly for sorted data structures in which you need to quickly know the maximum element

### Insertion

- To insert an element, we proceed in two steps
  - First the element is inserted in the first free position in the tree
  - Then, by using a procedure called *heapify*, the node is moved to its correct position by swapping elements
- Suppose we want to insert element 15 in the heap below



# **Deleting**

- For deleting an element, we proceed in a similar way
  - We first remove the top most element, and we substitute it with the last element in the heap
  - Then, we move down the element to its correct position by a sequence of swaps
- Suppose that we remove the top element in the heap below. We substitute it with the last element (4)





# Heap implementation

- The heap can be efficiently implemented with an array
- The root node is stored at index 0 of the array
- Given a node at index i:
  - its left child can be stored at 2i + 1
  - its right child can be stored at 2i + 2
  - the parent of node j is at  $\left\lfloor \frac{j-1}{2} \right\rfloor$



Figure: Efficently storing a heap in an array