Fundamentals of Programming

Data structures: tree and heap

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

March 27, 2012

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012

http://retis.sssup.it/~lipari

@ Trees

@ Binary trees

e AVL tree

© Heap

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 2/33

@ Trees

@ Binary trees

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 3/33

Representing hierarchies

@ One important data structure is the tree
@ InalLi st, nodes are connected with each other in a sequence
@ In atree, nodes are connected in a hierarchy

@ A Tr ee consists of a

@ root node
@ and a set of children nodes,
@ each child node can be the root of a sub-tree , or a leaf node if it
has no children
@ A typical example of tree is the organisation of a file system into
directories

@ Files are leaf nodes
o directories are parent nodes

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 4/33

Trees in graph theory

@ In graph theory, a tree is a special kind of graph:
@ there must be a simple (unique) path between any two nodes

@ Any node can be root!

@ This is true for any tree: but
picking a node as root, you
have a different structure

@ Of course, the meaning
may change (depending on
what is represented)

@ Arooted tree is a data

structure with one specific
root

@ here, we are only
interested to rooted
trees

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 5/33

Representing a tree

@ First, we need to represent a node
@ the node contains the data field, plus a list of children nodes

struct TreeNode {
voi d *pdat a;
LI ST chil dren;

b \‘ The list contains point-

ers to TREE_NCDE

TREE_NODE *treenode_create(void *data); «k
Creates a TREE_NODE |

typedef struct TreeStruct ({
TreeNode =root;

} TREE:
void tree_init(TREE *t): /

Initialises a TREE |

L—

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 6/33

@ Trees

@ Binary trees

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 7133

Binary trees

@ A binary tree is a data structure where each node can have at
most two children

@ Binary trees are mostly used for
@ Representing binary relationships (i.e. arithmetic expressions,
simple languages with binary operators, etc.)
@ Implement search trees

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 8/33

Binary trees definitions

@ The depth of a node is the length of the path from the root to the
node

@ The depth (or height) of a tree is the length of the path from the
root to the deepest node in the tree

@ Siblings are nodes that share the same parent node

@ A complete binary tree is a binary tree in which every level,
except possibly the last, is completely filled, and all nodes are as
far left as possible

@ A balanced binary tree is commonly defined as a binary tree in

which the depth of the two subtrees of every node never differ by
more than 1

@ other definitions are possible, depending on the maximum depth
difference we want to allow

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 9/33

Searching in a binary tree

@ Given a node that contains element k, the main idea is:
@ insert all elements that are less than k to the left
@ insert all other elements to the right
@ If the tree is balanced (i.e. it has approximately the same number
of nodes in the left and in the right subtrees), searching takes
O(log(n))
@ Also, insertion takes O(log(n))
@ However, as we insert new elements, the tree may become
unbalanced

March 27, 2012 10/33

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap

Example of binary tree

@ In the following figure we have a tree of integers

Binary Search Tree Example
Tree resulting from the following insertions: 38, 13, 51, 10, 12, 40, 84, 25, 89, 37, 66, 95
/\

&)
\ \
® ©)

@~
-
&

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 11/33

Exercises

@ Implement a binary tree of integers, without balancement
@ Test the algorithm for insertion by printing the tree in-order

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 12/33

Tree of integers

btree-int.h

typedef struct btree_node {
int dato;
struct btree_node *left;
struct btree_node =right;
} BNODE;

typedef struct btree_int {
BNCDE +r oot ;
} BTREE_INT;

void btree_init(BTREE_I NT *bt);

void btree_insert(BTREE_INT *bt, int d);
int btree_search(BTREE_INT *bt, int dato);
voi d btree_print_in_order (BTREE_I NT *bt);

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 13/33

./examples/08.trees-examples/btree-int.h

Insertion and search

btree-int.c

void __insert(BNODE *node, BNCDE *p)

{
if (p->dato < node->dato) { // to left
if (node->left == 0) node->left = p;
el se __insert(node->left, p);
else if (p->dato == node->dato) {
free(p);
printf("El ement already present!\n");
}
else { // to right
if (node->right == 0) node->right = p;
el se __insert(node->right, p);
}
}
btree-int.c

int __search(BNODE *node, int dato)
if (node == 0) return O;

if (node->dato == dato)

return 1;
else if (dato < node->dato)

return __search(node->left, dato);
el se return __search(node->right, dato);

Lipari (Scuola Superiore Sant’Anna) Tree and Heap

2012

14/33

./examples/08.trees-examples/btree-int.c
./examples/08.trees-examples/btree-int.c

Visiting a tree

@ There are two ways of listing the contents of a tree
@ Depth-first
@ Pre-order: first the root node is visited, then the left sub-tree, then
the right sub-tree
@ Post-order: first the left sub-tree is visited, then the right sub-tree,
then the root node
@ In-order: first the left sub-tree is visited, then the root node, then the
right sub-tree
@ Breadth first

@ First the root node is visited; then all the children; then all the
children of the children; and so on

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 15/33

A
/\ @ Breadthfirstt ABECDFG
5 = @ Pre-order: ABCDEFG
@ Post-order: CDBEFGEA
N N o In-order: CBDAFEG
C D F G

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 16/33

Visiting in order

btree-int.c

void __in_order(BNODE *node)
{
if (node == 0) return;
el se {
__in_order(node->left);
printf("%, ", node->dato);
__in_order(node->right);

@ For pre-order and post-order, it is sufficient to change the order in
which the print is done

@ Is it possible to do it iteratively rather than recursively?

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap

March 27, 2012 17133

./examples/08.trees-examples/btree-int.c

e AVL tree

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 18/33

@ The height of a tree is how may pointers | have to follow in the
worst case before reaching a leaves

@ It can be defined recursively;

@ The height of an empty tree is 0
@ The height of a tree is equal to the maximum between the heights
of the left and right subtrees plus 1

@ Example: what is the height of this subtree?

Binary Scarch Tree Example

‘Tree resulting from the following insertions: 38, 13, 51, 10, 12, 40, 84, 25, 85, 37, 66, 95

63/\

N /@\
€
\ \ 7\
@ @

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012

Balance

@ The difference between the height of the left subtree and the
height of the right subtree is called balance.
@ Atree is said to be balanced if

o the balanceis-1,00r1
@ Both the left and the right subtrees are balanced

@ (again a recursive definition!)
@ Is the tree in the previous slide balanced?
@ What is the balance of the tree obtained by example2.txt?

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012

@ When we insert a new element, the tree can become unbalanced
@ Therefore, we have to re-balance it
@ The operation that we use to balance the tree must preserve the
ordering!
@ The balance can be obtained by rotating a tree
@ A rotate operation charges the structure of the tree so that the tree
becomes balanced after the operation, and the order is preserved
@ There are many different implementation of the rotation operation,
that produce different types of balanced tree

@ Red-black trees
@ AVL trees
@ etc.

@ We will analyze the AVL tree

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 21/33

Left-left rotation

@ Suppose the tree with root X is unbalanced to the left (i.e. balance
= -2)
@ In this case, the height of the left subtree (with root Y) is larger than
the height of the right subtree by 2 levels

@ Also, suppose that the left subtree of Y (which has root Z) is
higher than its right subtree

@ We apply a left rotation:

X Y

O O

e
@) — O
el

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012

Left-left rotation

@ What happened?
@ Before the rotation, O O

@ suppose that the right Y / , / \ X
subtree of X had height h, O - O

@ Y had height h + 2 / %

® Z had height h + 1 O w w

@ W had height h

@ After the rotation, Y is the new root

@ X has height h + 1,
@ Z has heighth + 1
@ Also, notice that the order is preserved:

@ Before the rotation, Z <Y <W < X
o After the rotation, Z <Y <W < X

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 23/33

Left-right

@ A different case is when the left subtree has balance +1
@ In such a case we need to perform a left-right rotation

@ Before the rotation,

XQ <)Z

@ suppose that the right

subtree of X had height h, v / v / \ .

o Y had height h + 2 O — (O

@ Zhad heighth + 1 \

@ W had height h O D
~

@ After the rotation, Y is the new root

@ X has heighth + 1,
@ Zhas heighth + 1

@ The order is still preserved

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 2433

@ There are 4 possible rotations
o left-left : when the tree is unbalanced to the left and the left subtree

has balance -1
@ left-right : when the tree is unbalanced to the left, and the left

subtree has balance +1

@ right-left : when the tree is unbalanced to the right, and the right
subtree has balance -1

@ right-left : when the tree is unbalanced to the right, and the right
subtree has balance +1

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 25/33

O o) * a
N\ O\O o N\
AT AN .
‘O WO \/\
Figure: left-left Figure: right-right

O O Q! o
v AN N N
%yfuzﬁf*iﬁ
A~ o

Figure: left-right

Figure: right-left

© Heap

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 27133

@ An heap is a data structure that is used mainly for implementing
priority queues

@ A heap is a binary tree in which, for each node A, the value stored
in the node is always greater than the values stored in the childen

@ The data structure is also called max-heap (or min-heap if we
require that the node be less than its children)

Figure: Example of max-heap

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 28/33

@ Another property of max-heap is the fact that the heap is “full” in
all its levels except maybe the last one

@ Also, on the last level, all nodes are present from left to rightm
without holes

Figure: All nodes are full from left to right

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 29/33

@ The most important operations you can do on a heap are:
@ Insert an element in a ordered fashion
@ Read the top element
@ Extract the top element
@ An heap is used mainly for sorted data structures in which you
need to quickly know the maximum element

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 30/33

Insertion

@ To insert an element, we proceed in two steps

@ First the element is inserted in the first free position in the tree
@ Then, by using a procedure called heapify, the node is moved to its
correct position by swapping elements

@ Suppose we want to insert element 15 in the heap below

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 31/33

Deleting

@ For deleting an element, we proceed in a similar way

@ We first remove the top most element, and we substitute it with the
last element in the heap

@ Then, we move down the element to its correct position by a
sequence of swaps

@ Suppose that we remove the top element in the heap below. We
substitute it with the last element (4)

@
O e! ©!

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012 32/33

Heap implementation

@ The heap can be efficiently implemented with an array

@ The root node is stored at index O of the array
@ Given a node at index i:

@ its left child can be stored at 2i + 1
@ its right child can be stored at 2i + 2

@ the parent of node j is at {%J

FQITTOOTO [0

0 1 2 3 4 5 6

Figure: Efficently storing a heap in an array

G. Lipari (Scuola Superiore Sant'/Anna) Tree and Heap March 27, 2012

	Trees
	Binary trees

	AVL tree
	Heap

