
Object Oriented Software Design
Introduction

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

September 23, 2010

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 1 / 32

http://retis.sssup.it/~lipari


Outline

1 Summary of the course

2 Introduction

3 Learning to program

4 The human factor

5 How to become a master

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 2 / 32



Outline

1 Summary of the course

2 Introduction

3 Learning to program

4 The human factor

5 How to become a master

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 3 / 32



Organization of the course

The course is divided into 2 semesters, each one entitles to 6 credits

The first semester is open to students of:
GPIST
IMCNE
MAPNET

The second semester is open to students of:
GPIST
Allievi of Scuola Sant’Anna

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 4 / 32



First semester

First semester
Objective: to acquire basics knowledge of object oriented design
and programming
Abstract Data Types
Programming in Java and in C++
In both languages:

Inheritance, vs. composition, when and when not?
Exception safety
Design for re-use
Testing while programming
Generics

Exam:
3 assignments: 2 small programs, plus one bigger to be
developed during the course and handed over at the end
For MAPNET and IMCNE only: an oral examination

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 5 / 32



Second semester

Design Patterns
How to reuse existing knowledge

Software Engineering
Requirement Analysis
Classical Software life cycles
Agile and Xtreme programming

Tools
The Boost library
CVS, SVN, (git?)
Tools for testing
Documentation

Concurrent Programming
The Boost thread library
Distributed Middleware
Design Patterns for Distributed Concurrent Programming

Exam:
A project and oral examination.

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 6 / 32



Books and material

Java Programming
Bruce Eckel’s “Thinking in Java”
Sun’s documentation and Tutorials

C++ Programming
Stroustup’s “C++ Language” (Language reference)
Bruce Eckel’s “Thinking in C++”, Volume 1 (Learning C++)
Herb Sutter’s “Exceptional C++” (Advanced Tips and Tricks)
Alexandrescu’s “Modern C++ programming” (Meta-programming
with Templates)

And of course, these slides, and various material to be found over the
Internet

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 7 / 32



Outline

1 Summary of the course

2 Introduction

3 Learning to program

4 The human factor

5 How to become a master

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 8 / 32



Something to think about

“Computer science is no more about computers than astronomy is
about telescopes”

– Edsger Dijkstra

What else might it be about?

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 9 / 32



Something to think about

“Computer science is no more about computers than astronomy is
about telescopes”

– Edsger Dijkstra

What else might it be about?

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 9 / 32



Algorithms, programs, processes

Algorithm:
It is a logical procedure thought to solve a certain problem
It is informally specified as a sequence of elementary steps that an
execution machine must follow to solve the problem
it is not necessarily expressed in a formal programming language!

Program:
It is the implementation of an algorithm in a programming language,
that can be executed by an autonomous machine (calculator)
It can be executed several times, every time with different inputs

Process:
An instance of a program that, given a set of input values, produces
a set of outputs

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 10 / 32



Algorithm

Given a computational problem, it is
necessary to find a procedure,
consisting of a finite set of simple
steps that will produce the solution of
the problem.
Such a procedure is called
“Algorithm” in honor of arab
mathematician Mohammed ibn-Musa
al-Khuwarizmi (VIII century AC)

Figure: al-Khuwarizmi

Examples:
How to prepare a coffe
How to buy a coffe from the vending machine
How to calculate the square root of a number

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 11 / 32



Calculators

An algorithm needs a machine to execute it
Machine here is intended in the abstract sense

It can even be a human being, or group of people
However, it is important that the algorithm it is described so that the
machine can execute it without further instructions, or wrong
interpretation of what to do
Therefore, the steps must be simple, and precisely described

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 12 / 32



Coffe time!

Example: in the description of the
algorithm to prepare a coffe:

we must specify how much coffe to put,
so that the machine cannot be wrong in
preparing it
If the machine is a calculator (a stupid
machine!), then we must tell it exactly
how much coffe to put
If the machine is smart, we can be less
precise, for example, put “coffee” until
the machine is full
(actually, many human beings not not
smart enough to prepare a coffe!)

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 13 / 32



Programs

In this course, we are interested in
describing an algorithm so that a
computer can understand and
execute it
How to communicate with a
computer?

We need to use a language that the computer can understand

A programming language is not so much different than any human
language
The main difference is that the interpretation of a sentence
expressed in a programming language must be unambiguous

Human languages, instead, allow plenty of ambiguities!

Therefore, a programming language is grounded on a solid
mathematical basis

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 14 / 32



Outline

1 Summary of the course

2 Introduction

3 Learning to program

4 The human factor

5 How to become a master

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 15 / 32



Human beings . . . are very much at the mercy of the particular
language which has become the medium of expression for
their society. It is quite an illusion to imagine that one adjusts
to reality essentially without the use of language and that
language is merely an incidental means of solving specific
problems of communication and reflection. The fact of the
matter is that the “real world” is to a large extent
unconsciously built up on the language habits of the group.

The Status Of Linguistics As A Science, 1929, Edward Sapir

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 16 / 32



Learning a programming language

Learning a programming language is not so different from learning
a natural language

First of all, it is important to point out
that the structure of the language
influences the way we think at
problems

It is well known that people from
different countries tend to think in
different ways
Natural language is the primary
mental knowledge representation
system a

Therefore, reasoning is heavily
influenced by language

a
See

http://en.wikipedia.org/wiki/Cognitive_psychology. Image
taken from “Myth, Ritual, and Symbolism” http://bit.ly/cLLmgc

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 17 / 32

http://en.wikipedia.org/wiki/Cognitive_psychology
http://bit.ly/cLLmgc


Natural language

To be fluent in another language (e.g. English), it is important to
think sentences in that language

Thinking a sentence in the mother-toungue (e.g. Italian) and then
mentally translate to the new language (e.g. English) often
produces unnatural sentences
When speaking in a new language, we should also “switch” to a
new way of thinking1

1
Image taken from “Natural Language and the Computer Representation of Knowledge” http://bit.ly/ccdzLh

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 18 / 32

http://bit.ly/ccdzLh


Language structure

Back to programming languages

A low level language (MS Visual Basic, C,
etc.) lacks strong structure

Emphasis on programs as collection of
functions acting on global and local data
Correspondingly, low-level programs made
by beginners tend to lack in structure
When they have, it is difficult to find and
understand it

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 19 / 32



Object Oriented Language Structure

Object-oriented programming
languages favor a structure

Emphasis on programs as
set of objects
communicating through
well-defined interfaces
Everything is an object!

The programmers has to
model the world as a set of
object

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 20 / 32



Functional programming

Functional programming2

Functional languages impose yet another
structure

Emphasis on functions as first-class
concepts
Progams manipulate functions as well
as data

2
Comic strip from http://xkcd.com

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 21 / 32

http://xkcd.com


Learning the basics

Where to start from?

Similarly to learning natural languages, you should start from
learning to read and understand programs written by others

To understand: you should try to mentally execute the code, just
as a computer would do

To be able to do this, you have to understand first how the “abstract
machine” executes each part of the program
If you learn how to do this, you will not need sophisticated
debuggers

Then, you can learn to write code, keeping in mind how it is
executed by the machine

That’s the most difficult thing to do, because at the beginning you
haven’t the “right structure” in your mind yet

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 22 / 32



Learning the basics

Where to start from?

Similarly to learning natural languages, you should start from
learning to read and understand programs written by others
To understand: you should try to mentally execute the code, just
as a computer would do

To be able to do this, you have to understand first how the “abstract
machine” executes each part of the program
If you learn how to do this, you will not need sophisticated
debuggers

Then, you can learn to write code, keeping in mind how it is
executed by the machine

That’s the most difficult thing to do, because at the beginning you
haven’t the “right structure” in your mind yet

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 22 / 32



Learning the basics

Where to start from?

Similarly to learning natural languages, you should start from
learning to read and understand programs written by others
To understand: you should try to mentally execute the code, just
as a computer would do

To be able to do this, you have to understand first how the “abstract
machine” executes each part of the program

If you learn how to do this, you will not need sophisticated
debuggers

Then, you can learn to write code, keeping in mind how it is
executed by the machine

That’s the most difficult thing to do, because at the beginning you
haven’t the “right structure” in your mind yet

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 22 / 32



Learning the basics

Where to start from?

Similarly to learning natural languages, you should start from
learning to read and understand programs written by others
To understand: you should try to mentally execute the code, just
as a computer would do

To be able to do this, you have to understand first how the “abstract
machine” executes each part of the program
If you learn how to do this, you will not need sophisticated
debuggers

Then, you can learn to write code, keeping in mind how it is
executed by the machine

That’s the most difficult thing to do, because at the beginning you
haven’t the “right structure” in your mind yet

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 22 / 32



Learning the basics

Where to start from?

Similarly to learning natural languages, you should start from
learning to read and understand programs written by others
To understand: you should try to mentally execute the code, just
as a computer would do

To be able to do this, you have to understand first how the “abstract
machine” executes each part of the program
If you learn how to do this, you will not need sophisticated
debuggers

Then, you can learn to write code, keeping in mind how it is
executed by the machine

That’s the most difficult thing to do, because at the beginning you
haven’t the “right structure” in your mind yet

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 22 / 32



Learning the basics

Where to start from?

Similarly to learning natural languages, you should start from
learning to read and understand programs written by others
To understand: you should try to mentally execute the code, just
as a computer would do

To be able to do this, you have to understand first how the “abstract
machine” executes each part of the program
If you learn how to do this, you will not need sophisticated
debuggers

Then, you can learn to write code, keeping in mind how it is
executed by the machine

That’s the most difficult thing to do, because at the beginning you
haven’t the “right structure” in your mind yet

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 22 / 32



Outline

1 Summary of the course

2 Introduction

3 Learning to program

4 The human factor

5 How to become a master

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 23 / 32



Human interaction

Computer programming has important social aspects
At the beginning you learn to write small programs all by yourself

It’s you and the PC
the teacher gives you an exercise, you have to transform the
specification into a program
Or, you want to write a program for yourself, so you also give the
specification

When you code in this way, you have complete control of all the
aspects

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 24 / 32



Large programs

However, when you become a professional programmer, it’s a
completely different story

Professional programs get larger and larger (tens of thousands of
lines of code), and it takes much longer to write them
Even if you are the only programmer, you often lose control of what
you have done the week before (what was the meaning of that k
variable?)
Most often, however, the program code is written by a team
Depending on the project, the team can consist also of 5-6
programmers, and there can be many teams working on different
parts of the same project
It is important to learn how to work in a group

Therefore, it is important to be able to communicate between
partners without misunderstandings
The team leadership is a key factor for the success of the project

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 25 / 32



Large programs

However, when you become a professional programmer, it’s a
completely different story

Professional programs get larger and larger (tens of thousands of
lines of code), and it takes much longer to write them

Even if you are the only programmer, you often lose control of what
you have done the week before (what was the meaning of that k
variable?)
Most often, however, the program code is written by a team
Depending on the project, the team can consist also of 5-6
programmers, and there can be many teams working on different
parts of the same project
It is important to learn how to work in a group

Therefore, it is important to be able to communicate between
partners without misunderstandings
The team leadership is a key factor for the success of the project

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 25 / 32



Large programs

However, when you become a professional programmer, it’s a
completely different story

Professional programs get larger and larger (tens of thousands of
lines of code), and it takes much longer to write them
Even if you are the only programmer, you often lose control of what
you have done the week before (what was the meaning of that k
variable?)

Most often, however, the program code is written by a team
Depending on the project, the team can consist also of 5-6
programmers, and there can be many teams working on different
parts of the same project
It is important to learn how to work in a group

Therefore, it is important to be able to communicate between
partners without misunderstandings
The team leadership is a key factor for the success of the project

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 25 / 32



Large programs

However, when you become a professional programmer, it’s a
completely different story

Professional programs get larger and larger (tens of thousands of
lines of code), and it takes much longer to write them
Even if you are the only programmer, you often lose control of what
you have done the week before (what was the meaning of that k
variable?)
Most often, however, the program code is written by a team

Depending on the project, the team can consist also of 5-6
programmers, and there can be many teams working on different
parts of the same project
It is important to learn how to work in a group

Therefore, it is important to be able to communicate between
partners without misunderstandings
The team leadership is a key factor for the success of the project

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 25 / 32



Large programs

However, when you become a professional programmer, it’s a
completely different story

Professional programs get larger and larger (tens of thousands of
lines of code), and it takes much longer to write them
Even if you are the only programmer, you often lose control of what
you have done the week before (what was the meaning of that k
variable?)
Most often, however, the program code is written by a team
Depending on the project, the team can consist also of 5-6
programmers, and there can be many teams working on different
parts of the same project

It is important to learn how to work in a group

Therefore, it is important to be able to communicate between
partners without misunderstandings
The team leadership is a key factor for the success of the project

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 25 / 32



Large programs

However, when you become a professional programmer, it’s a
completely different story

Professional programs get larger and larger (tens of thousands of
lines of code), and it takes much longer to write them
Even if you are the only programmer, you often lose control of what
you have done the week before (what was the meaning of that k
variable?)
Most often, however, the program code is written by a team
Depending on the project, the team can consist also of 5-6
programmers, and there can be many teams working on different
parts of the same project
It is important to learn how to work in a group

Therefore, it is important to be able to communicate between
partners without misunderstandings
The team leadership is a key factor for the success of the project

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 25 / 32



Large programs

However, when you become a professional programmer, it’s a
completely different story

Professional programs get larger and larger (tens of thousands of
lines of code), and it takes much longer to write them
Even if you are the only programmer, you often lose control of what
you have done the week before (what was the meaning of that k
variable?)
Most often, however, the program code is written by a team
Depending on the project, the team can consist also of 5-6
programmers, and there can be many teams working on different
parts of the same project
It is important to learn how to work in a group

Therefore, it is important to be able to communicate between
partners without misunderstandings

The team leadership is a key factor for the success of the project

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 25 / 32



Large programs

However, when you become a professional programmer, it’s a
completely different story

Professional programs get larger and larger (tens of thousands of
lines of code), and it takes much longer to write them
Even if you are the only programmer, you often lose control of what
you have done the week before (what was the meaning of that k
variable?)
Most often, however, the program code is written by a team
Depending on the project, the team can consist also of 5-6
programmers, and there can be many teams working on different
parts of the same project
It is important to learn how to work in a group

Therefore, it is important to be able to communicate between
partners without misunderstandings
The team leadership is a key factor for the success of the project

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 25 / 32



Specification

How to communicate with customers?
A professional team writes programs for someone else (the
customer)
So, the customers must tell then team exactly what they want
That’s the specification

Still done in natural language
A very difficult aspect

Most of the failures in completing/delivering a corrects software
project are caused by

Wrong or ambiguous initial specification
Wrong interpretation of the specification
Continuously changing specification after the design

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 26 / 32



Software engineering

Software engineering is also a social science

Team management
Project planning
Risk management
Dealing with the customer
Continuosly evolving specification

All these aspects are as important as learning how to program

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 27 / 32



Software engineering

Software engineering is also a social science
Team management

Project planning
Risk management
Dealing with the customer
Continuosly evolving specification

All these aspects are as important as learning how to program

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 27 / 32



Software engineering

Software engineering is also a social science
Team management
Project planning

Risk management
Dealing with the customer
Continuosly evolving specification

All these aspects are as important as learning how to program

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 27 / 32



Software engineering

Software engineering is also a social science
Team management
Project planning
Risk management

Dealing with the customer
Continuosly evolving specification

All these aspects are as important as learning how to program

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 27 / 32



Software engineering

Software engineering is also a social science
Team management
Project planning
Risk management
Dealing with the customer

Continuosly evolving specification

All these aspects are as important as learning how to program

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 27 / 32



Software engineering

Software engineering is also a social science
Team management
Project planning
Risk management
Dealing with the customer
Continuosly evolving specification

All these aspects are as important as learning how to program

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 27 / 32



Software engineering

Software engineering is also a social science
Team management
Project planning
Risk management
Dealing with the customer
Continuosly evolving specification

All these aspects are as important as learning how to program

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 27 / 32



Outline

1 Summary of the course

2 Introduction

3 Learning to program

4 The human factor

5 How to become a master

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 28 / 32



How to become a good software designer

How to become a software design master?
Engineering approach
Lot of experience

Learning to develop good software is similar to learning to play
good chess

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 29 / 32



How to become a chess master

First, learn the rules
e.g., names of pieces, legal movements,
captures, board geometry, etc.

Second, learn the principles
e.g., relative value of certain pieces, power of a
threat, etc.
But principles are abstract. How to apply them
in practice?

Third, learn the patterns by studying games of
other masters

These games have certain patterns that must
be understood, memorized, and applied
repeatedly until they become second nature.

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 30 / 32



How to become a chess master

First, learn the rules
e.g., names of pieces, legal movements,
captures, board geometry, etc.

Second, learn the principles
e.g., relative value of certain pieces, power of a
threat, etc.
But principles are abstract. How to apply them
in practice?

Third, learn the patterns by studying games of
other masters

These games have certain patterns that must
be understood, memorized, and applied
repeatedly until they become second nature.

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 30 / 32



How to become a chess master

First, learn the rules
e.g., names of pieces, legal movements,
captures, board geometry, etc.

Second, learn the principles
e.g., relative value of certain pieces, power of a
threat, etc.
But principles are abstract. How to apply them
in practice?

Third, learn the patterns by studying games of
other masters

These games have certain patterns that must
be understood, memorized, and applied
repeatedly until they become second nature.

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 30 / 32



To become a software design master

First, learn the rules
e.g., programming languages, data structures, etc.

Second, learn the principles
e.g., software engineering principles such as separation of
concerns, etc.
But principles are abstract. How to apply them in practice?

Third, learn the patterns by studying designs of other masters
These designs have certain patterns that must be understood,
memorized, and applied repeatedly until they become second
nature.

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 31 / 32



To become a software design master

First, learn the rules
e.g., programming languages, data structures, etc.

Second, learn the principles
e.g., software engineering principles such as separation of
concerns, etc.
But principles are abstract. How to apply them in practice?

Third, learn the patterns by studying designs of other masters
These designs have certain patterns that must be understood,
memorized, and applied repeatedly until they become second
nature.

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 31 / 32



To become a software design master

First, learn the rules
e.g., programming languages, data structures, etc.

Second, learn the principles
e.g., software engineering principles such as separation of
concerns, etc.
But principles are abstract. How to apply them in practice?

Third, learn the patterns by studying designs of other masters
These designs have certain patterns that must be understood,
memorized, and applied repeatedly until they become second
nature.

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 31 / 32



To become a software design master

First, learn the rules
e.g., programming languages, data structures, etc.

Second, learn the principles
e.g., software engineering principles such as separation of
concerns, etc.
But principles are abstract. How to apply them in practice?

Third, learn the patterns by studying designs of other masters
These designs have certain patterns that must be understood,
memorized, and applied repeatedly until they become second
nature.

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 31 / 32



This course

This course is a tentative to form “Software Design Masters” in Object
Oriented software technology

A bottom-up approach
Object Oriented Languages
Programming Techniques
Design Techniques
An introduction to Software Engineering principles and tools

This course has been designed to be interactive
I need your help to carry on until the end!

G. Lipari (Scuola Superiore Sant’Anna) OOSD September 23, 2010 32 / 32


	Summary of the course
	Introduction
	Learning to program
	The human factor
	How to become a master

