
Object Oriented Software Design
I/O subsystem API

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

October 28, 2010

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 1 / 24

http://retis.sssup.it/~lipari

Outline

1 String

2 I/O and files

3 ArrayList

4 Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 2 / 24

Outline

1 String

2 I/O and files

3 ArrayList

4 Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 3 / 24

Utilities for manipulating strings

Since you will have to analyse strings to implement your program,
let’s have a closer look at class String
The String class is immutable, so that once it is created a String
object cannot be changed.

The String class has a number of methods that appear to modify
strings. Since strings are immutable, what these methods really do
is create and return a new string that contains the result of the
operation.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 4 / 24

Utilities for manipulating strings

Usually, methods that are used to “read” the value of some
property of a class are called accessor methods

method length() returns the number of characters in a string
To read the character at position i, we can call charAt(i)
You can copy a substring of a string into an array of characters as
follows:

String mystring = "This is a lecture";
char[] temp = new char[5];
mystring.getChars(5, 10, temp, 0);

It means: copy from the 5th character (included) to the 10th

character (excluded) into temp starting at position 0
After the copy, temp contains "is a "

If you want to obtain another string, it is possible to use substring:

String mystring = "This is a lecture";
String sub = mystring.substring(5,10);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 5 / 24

Concatenating strings

The String class includes a method for concatenating two strings:

string1.concat(string2);

This returns a new string that is string1 with string2 added to it at
the end. You can also use the concat() method with string literals,
as in:

"My name is ".concat("Rumplestiltskin");

Strings are more commonly concatenated with the + operator, as in

"Hello," + " world" + "!"

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 6 / 24

Formatted printing

In Java, you can output formatted printing using
System.out.printf(), as follows:

System.out.printf("A float %f, and an integer %d", 3.754, 20);

You can also use the format() method of class String:

String fs;
fs = String.format("The value of the float variable is %f, " +

"while the value of the integer variable " +
"is %d, and the string is %s", floatVar, intVar,
stringVar);

System.out.println(fs);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 7 / 24

Converting strings into numbers

The Number subclasses that wrap primitive numeric types (Byte,
Integer, Double, Float, Long, and Short) each provide a class
method named valueOf that converts a string to an object of that
type
public class ValueOfDemo {

public static void main(String[] args) {
if (args.length == 2) {

Float a = Float.valueOf(args[0]);
Float b = Float.valueOf(args[1]);

float c = Float.parseFloat(args[0]);
float d = Float.parseFloat(args[1]);

System.out.printf("a = %f", a.floatValue());
System.out.printf("b = %f", b.floatValue());
System.out.printf("c = %f", c);
System.out.printf("d = %f", d);

} else {
System.out.println("Insert two command-line arguments");

}
}

}
G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 8 / 24

Other methods

The String class has a large amount of different methods for
manipulating strings:

searching character, replacing substrings, etc.

Please refer to the Java 6 API to get a complete documentation for
String

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 9 / 24

Outline

1 String

2 I/O and files

3 ArrayList

4 Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 10 / 24

The File class

The File class does not represent a file, but one or more file
names.

It is used to get the list of files in a directory, as in
./examples/08.java-examples/DirList.java

Explanation:
the list() method of class File needs as argument an object of type
FilenameFilter, which is a very simple interface:

public interface FilenameFilter {
boolean accept(File dir, String name);

}

The list() will call the accept() on every file contained in the
directory, to see if a file name is “acceptable”,
if accept() returns true the name is inserted in the list, otherwise it
is not

This technique is called callback

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 11 / 24

./examples/08.java-examples/DirList.java

Making directories

It is possible to use the File class to create directories, see if a file
exist, get the file type, etc.

./examples/08.java-examples/MakeDirectories.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 12 / 24

./examples/08.java-examples/MakeDirectories.java

Input and output

The Java library classes for I/O are divided by input and output
everything derived from the InputStream or Reader classes have
basic methods called read() for reading a single byte or array of
bytes
everything derived from OutputStream or Writer classes have basic
methods called write() for writing a single byte or array of bytes
However, you won’t generally use these methods; they exist so that
other classes can use them - these other classes provide a more
useful interface
Thus, you’ll rarely create your stream object by using a single class,
but instead will layer multiple objects together to provide your
desired functionality.
The fact that you create more than one object to create a single
resulting stream is the primary reason that Java’s stream library is
confusing.

The rest of the slides are just descriptions of examples

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 13 / 24

Reading input by line

BufferedReader in = new BufferedReader(
new FileReader("IOStreamDemo.java"));

String s, s2 = new String();
while((s = in.readLine())!= null)

s2 += s + "\n";
in.close();

Comment
in represents the file handle, we open file IOStreamDemo.java
we read one string at time, and append all strings in s2.
The reading is done using buffering

i.e. a block of data is read in an internal buffer, and then we read line
by line from the buffer

This technique is called decorator pattern or wrapper pattern

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 14 / 24

Reading from std input

BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));

System.out.print("Enter a line:");
System.out.println(stdin.readLine());

Comment:
In this case, we read one line from the standard input (the
keyboard), represented by object System.in
This same code can be used in the assignment

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 15 / 24

Reading from a string

StringReader in2 = new StringReader(s2);
int c;
while((c = in2.read()) != -1)

System.out.print((char)c);

It is possible to treat a string as a file
In the example, we read one character at time from the string

It is also possible to “unread” one character, as follows:

String s = "This is a string!";
PushbackReader r = new PushbackReader(new StringReader(s));
char c = (char)r.read(); // read character ’T’
r.unread(’P’);
System.out.println((char)r.read()); // prints ’P’

In some cases, this may be useful for low-level parsing of strings

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 16 / 24

Writing onto a file

try {
BufferedReader in4 = new BufferedReader(

new StringReader(s2));
PrintWriter out1 = new PrintWriter(

new BufferedWriter(new FileWriter("IODemo.out")));
int lineCount = 1;
while((s = in4.readLine()) != null)

out1.println(lineCount++ + ": " + s);
out1.close();

} catch(EOFException e) {
System.err.println("End of stream");

}

The previous example reads one line at time from a string, and
writes on a output file

PrinterWriter is used to output text files, it wraps a BufferedWriter
which wraps an output file writer
If you need to write a binary file, you only need to remove the
PrinterWriter class, and only use the BufferedWriter.
The explicit close() for out1 is needed otherwise the buffers don’t
get flushed, so they’re incomplete

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 17 / 24

Outline

1 String

2 I/O and files

3 ArrayList

4 Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 18 / 24

Arrays

We have seen arrays
Arrays have fixed length: once you create an array, it is not possible
to add further elements to it

Variable-length arrays are supported by class ArrayList
Three constructors:

default constructor (an empty array),
a constructor that takes an integer (the initial capacity, but the array is
still empty)
a constructor that takes a Collection of object
ArrayList may only contain references to Objects

API:
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayLis

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 19 / 24

http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

Example

ArrayListExample.java

import java.util.*;

class ArrayListExample {
public static void main(String args[]) {

ArrayList al = new ArrayList();
for (int i=0; i<args.length; i++) al.add(args[i]);

System.out.println("al.size() = " + al.size());
for (int i=0; i < al.size(); i++) {

System.out.println(al.get(i));
}
al.add("This is the last one");
al.add(0, "this is the first one");
System.out.println("al.size() = " + al.size());
for (int i=0; i < al.size(); i++) {

System.out.println(al.get(i));
}

}
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 20 / 24

./examples/08.java-examples/ArrayListExample.java

Outline

1 String

2 I/O and files

3 ArrayList

4 Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 21 / 24

Exercises

Parenthesis matching
Write a class that provides a static method to find matching
parenthesis in a String
The method takes as input a string, and the position of the first open
parenthesis and returns the position of the closing parenthesis

String s = "5 * (4 + 2) / 2";
Parenthesis.get(s, 4); // returns 10

In fact:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
5 * (4 + 2) / 2

Pay attention to nested parenthesis:

String s = "5 * (4 / (2 - 1) - 2) / 2";
Parenthesis.get(s, 4); // returns 20, not 15

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 22 / 24

Errors

The function must:
raise an exception called UnmatchedParenthesisException if it
cannot find a matching closing parenthesis
raise an exception called NotAParenthesisException if the initial
position does not contain a left parenthesis symbol “(”

Write the function a set of at least 5 tests that check the
correctness of your implementation

Two tests must check that the exceptions are correctly raised
One test checks for simple parenthesis
Another one checks for 3 levels of parenthesis nesting
The last one checks for a matching parenthesis as last character

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 23 / 24

Use your utility

Now you should use your utility on a text file
Read the file line by line
For every line:

Print the line on screen
below, the number of outer groups of parenthesis, and for every
group, and the number of contained groups
If there is an error, prints the line number and the error message, and
continues with the next line

Example:

(a + (b+c) + (a + (g+h)))
>>> 1 groups "a + (b+c) + (a + (g+h))"
>>> 2 groups "b+c", "a + (g+h)"
>>> 0 groups
>>> 1 group "g+h"
>>> 0 groups

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 24 / 24

	String
	I/O and files
	ArrayList
	Exercises

