Object Oriented Software Design

I/O subsystem API

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

October 28, 2010

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010

http://retis.sssup.it/~lipari

@ String

© /0 and files

e ArrayList

@ Exercises

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 2/24

@ String

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 3/24

Utilities for manipulating strings

@ Since you will have to analyse strings to implement your program,
let’'s have a closer look at class String

@ The String class is immutable, so that once it is created a String
object cannot be changed.

@ The String class has a number of methods that appear to modify
strings. Since strings are immutable, what these methods really do
is create and return a new string that contains the result of the
operation.

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 4/24

Utilities for manipulating strings

@ Usually, methods that are used to “read” the value of some
property of a class are called accessor methods
@ method length() returns the number of characters in a string
@ To read the character at position i, we can call charAt(i)
@ You can copy a substring of a string into an array of characters as
follows:

String nystring = "This is a | ecture";
char[] tenp = new char[5];
nmystring. get Chars(5, 10, tenp, 0);

@ It means: copy from the 5" character (included) to the 10™
character (excluded) into temp starting at position O
@ After the copy, temp contains"is a "

@ If you want to obtain another string, it is possible to use substring:

String nystring = "This is a | ecture";
String sub = nystring.substring(5,10);

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 5/24

Concatenating strings

@ The String class includes a method for concatenating two strings:

stringl. concat (string2);

@ This returns a new string that is stringl with string2 added to it at
the end. You can also use the concat() method with string literals,
asin:

‘"Ny name is ".concat ("Runplestiltskin"); ‘

@ Strings are more commonly concatenated with the + operator, as in

“‘Hello," + " worldt o+ UL ‘

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 6/24

Formatted printing

@ In Java, you can output formatted printing using
System.out.printf(), as follows:

Systemout.printf("A float %, and an integer %", 3.754, 20);

@ You can also use the format() method of class String:

String fs;

fs = String.format ("The value of the float variable is %, " +
"while the value of the integer variable " +
"is 9%, and the string is %", floatVar, intVar,
stringVar);

Systemout.println(fs);

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 7124

Converting strings into numbers

@ The Number subclasses that wrap primitive numeric types (Byte,
Integer, Double, Float, Long, and Short) each provide a class
method named valueOf that converts a string to an object of that
type

public class Val ueX Denp {
public static void main(String[] args) {
if (args.length == 2) {
Fl oat a Fl oat . val ueOf (args[0]);
Float b Fl oat . val uef (args[1]);

fl oat

c Fl oat . parseFl oat (args[0]);
float d

Fl oat . par seFl oat (args[1]);

System out. printf ("

Systemout.printf("

Systemout. printf ("

Systemout.printf("
} else {

Systemout.println("Insert two cormand-1ine arguments");
}

%", a.floatValue());
%", b.floatValue());
%", c);
%", d);

o0 oW

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 8/24

Other methods

@ The String class has a large amount of different methods for
manipulating strings:

@ searching character, replacing substrings, etc.

@ Please refer to the Java 6 API to get a complete documentation for
String

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java

October 28, 2010 9/24

© /0 and files

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 10/24

The File class

@ The File class does not represent a file, but one or more file
names.

@ Itis used to get the list of files in a directory, as in
.l exanpl es/ 08. j ava- exanpl es/DirLi st.java

@ Explanation:

@ the list() method of class File needs as argument an object of type
FilenameFilter, which is a very simple interface:

public interface FilenanmeFilter {
bool ean accept(File dir, String nane);
}

@ The list() will call the accept() on every file contained in the
directory, to see if a file name is “acceptable”,

@ if accept() returns true the name is inserted in the list, otherwise it
is not

@ This technique is called callback

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 11/24

./examples/08.java-examples/DirList.java

Making directories

@ Itis possible to use the File class to create directories, see if a file
exist, get the file type, etc.

@ ./ exanpl es/ 08. j ava- exanpl es/ MakeDi rectori es. j ava

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 12/ 24

./examples/08.java-examples/MakeDirectories.java

Input and output

@ The Java library classes for I/0O are divided by input and output

@ everything derived from the InputStream or Reader classes have
basic methods called read() for reading a single byte or array of
bytes

@ everything derived from OutputStream or Writer classes have basic
methods called write() for writing a single byte or array of bytes

@ However, you won't generally use these methods; they exist so that
other classes can use them - these other classes provide a more
useful interface

@ Thus, you'll rarely create your stream object by using a single class,
but instead will layer multiple objects together to provide your
desired functionality.

@ The fact that you create more than one object to create a single
resulting stream is the primary reason that Java’s stream library is
confusing.

@ The rest of the slides are just descriptions of examples

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 13/24

Reading input by line

Buf f eredReader in = new BufferedReader (
new Fi | eReader ("1 OStreanDeno. j ava"));
String s, s2 = new String();
while((s = in.readLine())!= null)
s2 += s + "\n";
in.close();

@ Comment

@ in represents the file handle, we open file |IOStreamDemo.java
@ we read one string at time, and append all strings in s2.
@ The reading is done using buffering
@ i.e. a block of data is read in an internal buffer, and then we read line
by line from the buffer

@ This technique is called decorator pattern or wrapper pattern

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 14/ 24

Reading from std input

Buf f eredReader stdin = new BufferedReader (
new | nput St reanReader (Systemin));

Systemout.print("Enter a line:");

System out. println(stdin.readLine());

@ Comment:
@ In this case, we read one line from the standard input (the
keyboard), represented by object System.in
@ This same code can be used in the assignment

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010

Reading from a string

StringReader in2 = new StringReader(s2);
int c;
while((c = in2.read()) != -1)

System out. print((char)c);

@ It is possible to treat a string as a file
@ In the example, we read one character at time from the string

@ It is also possible to “unread” one character, as follows:

String s = "This is a string!";

PushbackReader r = new PushbackReader (new Stri ngReader(s));
char ¢ = (char)r.read(); /'l read character 'T
r.unread(’ P');

Systemout.println((char)r.read()); // prints 'P

@ In some cases, this may be useful for low-level parsing of strings

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 16/ 24

Writing onto a file

try {
Buf f eredReader in4 = new BufferedReader (
new StringReader(s2));
PrintWiter outl = new PrintWiter(
new Buf feredWiter(new FileWiter ("l ODenp.out")));
int lineCount = 1;
while((s = ind.readLine()) !'= null)
outl.println(lineCount++ + ": " + s);
out 1. cl ose();
} catch(EOFException e) {
Systemerr.println("End of streant');
}

@ The previous example reads one line at time from a string, and
writes on a output file

@ PrinterWriter is used to output text files, it wraps a BufferedWriter
which wraps an output file writer

@ If you need to write a binary file, you only need to remove the
PrinterWriter class, and only use the BufferedWriter.

@ The explicit close() for outl is needed otherwise the buffers don't
get flushed, so they're incomplete

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 17/ 24

e ArrayList

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 18/24

@ We have seen arrays
@ Arrays have fixed length: once you create an array, it is not possible
to add further elements to it
@ Variable-length arrays are supported by class ArrayList
@ Three constructors:
@ default constructor (an empty array),
@ a constructor that takes an integer (the initial capacity, but the array is
still empty)
@ a constructor that takes a Collection of object
@ ArrayList may only contain references to Objects
@ API:
http://downl oad. oracl e. com j avase/ 1. 4. 2/ docs/ api / j a\

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 19/ 24

http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

ArrayListExample.java

inmport java.util.x*;

class Arrayli st Exanple {
public static void main(String args[]) {
ArraylList al = new ArrayList();
for (int i=0; i<args.length; i++) al.add(args[i]);

Systemout.println("al.size() =" + al.size());
for (int i=0; i < al.size(); i++) {
Systemout.printin(al.get(i));

al .add("This is the last one");

al .add(0, "this is the first one");

Systemout.println("al.size() =" + al.size());

for (int i=0; i < al.size(); i++) {
Systemout.println(al.get(i));

}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 20/ 24

./examples/08.java-examples/ArrayListExample.java

Outline

@ Exercises

Lipari (Scuola Superiore Sant’ Introduction to Java October 28, 2010 21/24

Exercises

@ Parenthesis matching

]

]

Write a class that provides a static method to find matching
parenthesis in a String

The method takes as input a string, and the position of the first open
parenthesis and returns the position of the closing parenthesis

String s ="5 % (4 +2) /[2"

Par ent hesi s. get (s, 4); /1 returns 10

In fact:
[0[T[2[3 465678091011 12]13]14)
(s =17 [ctaf T+17T T2y [[7T T2]

Pay attention to nested parenthesis:

String s ="5* (4/ (2 -
Par ent hesi s. get (s, 4);

1) - 2) | 2"

/! returns 20, not 15

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to Java October 28, 2010 22/24

Errors

@ The function must:

@ raise an exception called UnmatchedParenthesisException if it
cannot find a matching closing parenthesis

@ raise an exception called NotAParenthesisException if the initial
position does not contain a left parenthesis symbol “(”

@ Write the function a set of at least 5 tests that check the
correctness of your implementation

@ Two tests must check that the exceptions are correctly raised

@ One test checks for simple parenthesis

@ Another one checks for 3 levels of parenthesis nesting

@ The last one checks for a matching parenthesis as last character

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 23/24

Use your utility

@ Now you should use your utility on a text file

@ Read the file line by line
@ For every line:
@ Print the line on screen
@ below, the number of outer groups of parenthesis, and for every
group, and the number of contained groups
@ If there is an error, prints the line number and the error message, and
continues with the next line

o Example:

(a + (b+c) + (a + (g+h)))

>>> 1 groups "a + (b+c) + (a + (g+h))"
>>> 2 groups "b+c", "a + (g+h)"

>>> 0 groups

>>> 1 group "g+h"

>>> 0 groups

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 28, 2010 2424

	String
	I/O and files
	ArrayList
	Exercises

