Object Oriented Software Design

The C language

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

November 15, 2010

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

http://retis.sssup.it/~lipari

@ C Programs

9 Declarations and definitions
9 Functions

@ Visibility, scope and lifetime
a Preprocessor

@ Javavs C — |

ﬂ C pointers

@ Stack memory

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 2/64

@ C Programs

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 3/64

The C language

@ C++ is an object oriented language built upon C
@ Before looking at C++, let's have a quick look at how a C program is
structured
@ The C language is a compiled language
@ The C source code is transformed into an executable program
@ Unlike a Java compiler program (i.e. a set of .class files which
needs a Java Virtual Machine), an executable file can be executed
directly by the OS
@ This means that an executable program is not portable

E os)

| HW |

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 4/64

Hello world in C

@ Let’s start with a classic:

hello.c

#i ncl ude <stdio. h>

int nain()

{
printf("Hello world!\n");
return O;

include includes definitions for library functions (in this case, the
printf() function is defined in header file stdio.h)

main function this function must always be present in a C program. It
is the first function to be invoked (the entry point)

return end of the function, returns a value to the shell

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 5/64

./examples/11.cpp-examples/hello.c

Compiling the code

@ The translation from high-level language to binary is done by the
compiler (and the linker)
@ the compiler translates the code you wrote in the source file
(hello.c)

@ the linker links external code from libraries of existing functions (in
our case, the pri nt f () function for output on screen)

gcc hello.c —o hello hello

compile &

. executable
link

std library
(printf)

Figure: Compiling a file

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 6/64

Compiling a C program

@ A C program consists of one ore more source files, each one is
called a compilation unit or module

@ Each unit is compiled separately, and a object file is generated as
a result

@ All objects files and the libraries are linked together to produce the

executable file

libraries

gee module_a.c

o e
gee module_b.c

module_b.o

executable

myprog

module_b.c compile

gee module_c.c

@ o

module_c.0

November 15, 2010 7164

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

9 Declarations and definitions

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 8/64

Declarations, functions, expressions

@ A C program is a sequence of global declarations and definitions
@ declarations of global variables and functions
@ definitions of variables and functions

o Examples:
int a; /] declaration + definition
int b = 10; /'l declaration + definition + init
extern int c; /1 only declaration (no definition)
int c /1 definition
int f(int); /1 only declaration
int f(int p) /1 definition
}
int g() /] declaration + definition
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

extern

@ Keyword ext er n is used to specify that we are declaring
something without defining it

@ Itis implicit for functions

@ A function declaration is also called function prototype

Difference from Java

Notice that in Java every declaration is also a definition

November 15, 2010 10/ 64

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

Statements and expressions

@ The Java syntax is a derivative of the C syntax
@ Therefore, in C you find similar statements to the ones you have
already found in Java
for(init ; cond ; expr) statenment;
whil e (cond) statenent;
if (cond) statenent; else statement;
do statenment while (cond);
switch (¢) { case a : statenent; case b :
statenent; }

& 6 6 6 ¢

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 11/64

@ Instead of single variables, we can declare arrays of variables of
the same type

@ They have all the same type and the same name
@ They can be addressed by using an index

int i;
int a[10];

a[0]
a[1]
i =5

a[i] = a[i-1] + a[i+1];

10;
20;

@ Very important: If the array has N elements, index starts at 0,
and last element is at N-1

@ In the above example, last valid element is a[9]

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 12 /64

dice.c

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

int main()
{
int i;
int di, d2;
int a[13]; /* uses [2..12] «/
for (i =2; i <=12; i =i + 1) a[i] = 0;
for (i 0; i <100; i =i + 1) {

dl = rand() %6 + 1;

d2 rand() %6 + 1;

a[dl + d2] = a[dl + d2] + 1;
}
for(i =2; i <=12; i =i + 1)

printf("%: %\n", i, a[i]);
return O;

pari (Scuola Superiore San November 15, 2010 13/64

./examples/11.cpp-examples/dice.c

Index range

@ What happens if you specify an index outside the array
boundaries?

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 14/ 64

Index range

@ What happens if you specify an index outside the array
boundaries?

outbound.c
@ The compiler does #i ncl ude <stdio. h>
not complain, but you int mai nQ)
can get a random {
run-time error! int i;
. int a[10];
@ Consider the
following program: for g'[i=]0; A A
what will happen? printf("al%d] = %\n", i, a[i]);
}
printf("Initialization conpleted!\n");
return O;
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 14 /64

./examples/11.cpp-examples/outbound.c

Questions

@ Index out of bounds is a programming error
@ Why the compiler does not complain?
@ Why the program does not complain at run-time?
@ What is the memory allocation of the program? Where is the array
allocated?

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 15/ 64

Initialization

@ Arrays can be initialized with the following syntax

int a[4] = {0, 1, 2, 3};

@ This syntax is only for static initialization, and cannot be used for
assignment

int a[4];

a=1{0 1, 2, 3}; /I syntax error!

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 16/64

@ Two- and three-dimensional
arrays (matrices):

@ Static and dynamic initialisation

G. Lipari (Scuola Superiore Sant'/Anna)

double mat[3][3];
int cube[4][4][4];

mat[0][2] = 3.5;

matrix.c

#i ncl ude <stdio. h>

int main()
{ . .
int i;
double mat[3][3] = {
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
}s
mat[0][2] = 3.5;
for (i=0; i<9; i++) {
mat[i/3][19%8] = 2.0;

printf("Done\n");
return O;

Introduction to C++

November 15, 2010

./examples/11.cpp-examples/matrix.c

Structure definition

@ In many cases we need to aggregate variables of different types
that are related to the same concept

@ each variable in the structure is called a field
@ the structure is sometimes called record

@ Example
struct student { struct position {
char nane[20]; doubl e x;
char surnang[30] ; doubl e vy;
int age; doubl e z;
int marks[20]; 1
char address[100];
char country[100]; struct position pl, p2, p3;
b
struct student si;

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

Accessing data

@ To access a field of a structure, use the dot notation

#i ncl ude <mat h. h>

struct position {
doubl e x;
doubl e vy;
doubl e z;

b
struct position pl
pl. x
pl.y

10 * cos(0.74);
10 * sin(0.74);

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 19/64

Outline

e Functions

G. Lipari (Scuola Superiore Sant'/Anna) ction to C++ November 15, 2010 20/64

Function definition and declaration

@ A function is defined by:

@ aunique name
a return value

e & ©

@ An example: this function

raises a double number to an doubl e power (double x, int y)
{

integer power

a list of arguments (also called parameters)
a body enclosed in curly braces

/* returns the power of x toy =/
int i;
doubl e result = 1;

for (i=0; i <vy; i++)
result = result * x;

return result;

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++ November 15, 2010 21/64

Function call

power.c
@ This is how the function is int main()
called. doubl & nyx:
@ The formal parameters x int nyy;
and y are substituted by the double res;
actual parameters (the printf("Enter x and y\n");
values of xx and yy) printf("x? ");

scanf ("% g", &nmyx);
printf("y? ");

scanf ("%", &myy);
res = power (nyx, nyy);

printf("x"y = %gt\n", res);

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 22 /64

./examples/11.cpp-examples/power.c

Parameters

@ Modifications on local parameters have no effect on the caller

here? x/

int nultbytwo(int x)
{
X = X *x 2;
return x;
}
int main()
{
i =5
res = nmultbytwo(i);
/* how much is i
}

]

X is just a copy of i

modifying x modifies the copy,
not the original value

We say that in C parameters
are passed by value

There is only one exception to
this rule: arrays

@ An array parameter is never
copied, so maodification to the
local parameter are
immediately reflected to the
original array

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 15, 2010 23/64

Array parameters

swap.c
#i ncl ude <stdio. h>
void swap (int a[])
{
int tnp;
tmp = a[0];
a[0] = a[1];
a[1] = tnp;
return;
}
int main()
{
int ny[2] = {1,5}
printf ("before swap:
ny[0], ny[1]);
swap(ny);
printf ("after swap:
) ny[0], ny[1]);

% %",

% %d",

@ The array is not copied
@ modification on array a are
reflected in modification on

array ny
@ (this can be understood
better when we study
pointers)
@ Notice also:

@ the swap function does not
need to return anything: so
the return type is voi d

o the array ny is initialised
when declared

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 15, 2010 24 /64

./examples/11.cpp-examples/swap.c

@ Visibility, scope and lifetime

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 25/64

@ Global variables are variables defined outside of any function
@ Local variables are defined inside a function

@ The visibility (or scope) of a variable is the set of statements that
can “see” the variable
@ remember that a variable (or any other object) must be declared
before it can be used
@ The lifetime of a variable is the time during which the variable
exists in memory

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 26 /64

pn is a global variable
scope: all program
lifetime: duration of the program

#i ncl ude <stdio. h>

int pn[100];
int is_prime(int x)

{

int i,j;

int tenp;
int nmain()

int res;
char s[10];

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 27164

pn is a global variable

#i ncl ude <stdio. h> SCOpE- .aII program
lifetime: duration of the program
int pn[100];
| xIs aparameter

int is_prime(int x) - scope: body of function is_prime
{ lifetime: during function execution

int i,j;
}
int tenp;
int nmain()
{

int res;

char s[10];
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

pn is a global variable
scope: all program
lifetime: duration of the program

#i ncl ude <stdio. h>

int pn[100];
| xIs aparameter

int is_prime(int x) . __— | scope: body of function is_prime

{ lifetime: during function execution
int i,j;
_\\ i,j are local variables
} scope: body of function is_prime
) lifetime: during function execution
int tenp;
int nmain()
{
int res;
char s[10];
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

pn is a global variable
scope: all program
lifetime: duration of the program

#i ncl ude <stdio. h>

int pn[100];
| xIs aparameter

int is_prime(int x) . __— | scope: body of function is_prime

{ lifetime: during function execution

int i,j;
\\ i,j are local variables

} scope: body of function is_prime

) lifetime: during function execution

int tenp;

int nai n()\\ temp is a global variable

{ scope: all objects defined after temp
int res; lifetime: duration of the program
char s[10];

}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

pn is a global variable
scope: all program
lifetime: duration of the program

#i ncl ude <stdio. h>

int pn[100];
X is a parameter

int is_prime(int x) . __— | scope: body of function is_prime

{ lifetime: during function execution
int i,j;
\\ i,j are local variables
} scope: body of function is_prime
) lifetime: during function execution
int tenp;
int nai n()\\ temp is a global variable
{ scope: all objects defined after temp
int res; lifetime: duration of the program
char s[10r\
S l___ res and s[] are local variables
} scope: body of function main

lifetime: duration of the program

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

Global scope

@ A global variable is declared outside all functions
@ This variable is created before the program starts executing, and it
exists until the program terminates
@ Hence, it’s lifetime is the program duration
@ The scope depends on the point in which it is declared

@ All variables and functions defined after the declaration can use it
@ Hence, it's scope depends on the position

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 28/64

Local variables

@ Local variables are defined inside functions

Y

int g — |
— gisglobal |
int nmyfun()
{
int ki double a; “— T—— kand a are local to myfun() |
}
int yourfun() — in function yourfun(), it is possible to use

variable g but you cannot use variable k
and a (out of scope)

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++ November 15, 2010

Local variables

@ Local variables are defined inside functions

-

int yourfun()

int g; — |
— gisglobal |
int nmyfun()
{
int ki double a; ~—— T———_ kandaare local to myfun() |

in function yourfun(), it is possible to use
| yourfun(), itis p

variable g but you cannot use variable k
/ and a (out of scope)

@ k and a cannot be used in your f un() because their scope is
limited to function nmyf un() .

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 29/64

Local variable lifetime

@ Local variable are created only when the function is invoked;
@ They are destroyed when the function terminates
@ Their lifetime corresponds to the function execution
@ Since they are created at every function call, they hold only
temporary values useful for calculations

int fun(int x)

{
int i =0;

L . x
return i;
} \ i is initialized to O at every fun() call I

int main()

{

at this point, ais 5 and b is 6;

int a, b; /— I

a = fun(5);
b fun(6);

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

Modifying lifetime

@ To modify the lifetime of a local variable, use the st at i ¢ keyword

int nyfun()
t static int i = O | This is a static variable: it is initialised
only once (during the first call), then the
P+ value is maintained across successive
calls
return i;
}
int main()
{
printf("% ", nyfun());
printf("% ", nyfun());
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 31/64

Modifying lifetime

@ To modify the lifetime of a local variable, use the st at i ¢ keyword

int nyfun()
t static int i = O | This is a static variable: it is initialised
only once (during the first call), then the
P+ value is maintained across successive
calls
return i;
}
This prints 1 I
int main()
{
printf("%d ", nyfun());
printf("% ", nyfun());
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 31/64

Modifying lifetime

@ To modify the lifetime of a local variable, use the st at i ¢ keyword

int nyfun()
t static int i = O | This is a static variable: it is initialised
only once (during the first call), then the
P+ value is maintained across successive
calls
return i;
}
This prints 1 I
int main()
{
printf("%d ", nyfun()); — This prints 2
printf("%d " myfun()): - L— = |
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 31/64

@ Itis possible to define two variables with the same name in two
different scopes
@ The compiler knows which variable to use depending on the scope

@ Itis also possible to hide a variable

int funl()
{

int i;

}
int fun2()
{

int i;

i ++;

}

November 15, 2010 32/64

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

@ Itis possible to define two variables with the same name in two
different scopes
@ The compiler knows which variable to use depending on the scope

@ Itis also possible to hide a variable

int funl()
{
int i;
i}nt fun2() increments the
{ local variable of
int i; fun2()
i+
}

November 15, 2010 32/64

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

@ Itis possible to define two variables with the same name in two
different scopes
@ The compiler knows which variable to use depending on the scope

@ Itis also possible to hide a variable

int funl() —
S int funi()
int i {
int i;
i} nt fun2() increments the i+
{ local variable of ||}
int i; fun2() I{nt fun2()
i' ++ i ++;
yo }

November 15, 2010 32/64

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

@ Itis possible to define two variables with the same name in two

different scopes

@ The compiler knows which variable to use depending on the scope
@ Itis also possible to hide a variable

int funl()
{

int i;

}

int fun2()

{ - .
int i;
i+

}

increments

local variable of

fun2()

int i;
int funl()

{
int i;
the i+
}
int fun2()

i ++;

i

}

_

| —

local variable of

Increments the
funi()

November 15, 2010 32/64

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

@ Itis possible to define two variables with the same name in two

different scopes

@ The compiler knows which variable to use depending on the scope
@ Itis also possible to hide a variable

int funl()
{

int i;

}

int fun2()

{ - .
int i;
i+

}

int i;
int funl()
{
int i;
increments the i+
local variable of ||}
fun2() int fun2()
i ++;
}

_

Increments
local variable
funi()

| —

the
of

Increments
global variable

—

the

November 15, 2010

32/64

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

Outline

a Preprocessor

Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 33/64

Pre-processor

@ In the first step, the input file is analyzed to process preprocessor
directives
@ A preprocessor directive starts with symbol #
@ Example are: #i ncl ude and #def i ne
@ After this step, a (temporary) file is created that is then processed
by the compiler

November 15, 2010 34/64

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

Directives

@ With the include directive, a file is included in the current text file

@ In other words, it is copied and pasted in the place where the
include directive is stated
@ With the define directive, a symbol is defined
@ Whenever the preprocessor reads the symbol, it substitutes it with
its definition
@ Itis also possible to create macros
@ To see the output of the pre-processor, run gcc with -E option (it
will output on the screen)

gcc -E myfile.c ‘

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 35/64

An example

main.c

#include "nyfile.h"
#include "yourfile.h"

int d;

int a=5;

int b=6;

int main()

{
double ¢ = PI; /1 pi grego
d = MYCONST; /1 a constant
a = SUM b, d); /1l a macro
return (int)a;

}

myfile.h

#defi ne MYCONST 76
extern int a, b;
#define SUMX,y) x+y

yourfile.h

#define PI 3.14
extern int d;

Lipari (Scuola Superiore Sant’Anna)

Introduction to C++

November 15, 2010

36 /64

./examples/11.cpp-examples/main.c
./examples/11.cpp-examples/myfile.h
./examples/11.cpp-examples/yourfile.h

An example

main.c

#include "nyfile.h"
#include "yourfile.h"

int d;

int a=5;

int b=6;

int main()

{
double ¢ = PI; /1 pi grego
d = MYCONST; /1 a constant
a = SUM b, d); /1l a macro
return (int)a;

}

myfile.h

#defi ne MYCONST 76
extern int a, b;
#define SUMX,y) x+y

yourfile.h

#define PI 3.14
extern int d;

Lipari (Scuola Superiore Sant’Anna)

main.c.post

1 "main.c"

1 "<built-in>"

1 "<command-|ine>"
1 "main.c"

1 "nyfile.h" 1

extern int a, b;
2 "main.c" 2
1 "yourfile.h" 1

extern int d;
3 "main.c" 2
int d;
int a
int b

5;
6;

int main()
{
double ¢ = 3.14;
d = 76;
a = b+d;
return (int)a;

Introduction to C++

November 15, 2010

./examples/11.cpp-examples/main.c
./examples/11.cpp-examples/myfile.h
./examples/11.cpp-examples/yourfile.h
./examples/11.cpp-examples/main.c.post

Macros effects

@ Pay attention to macros, they can have bad effects

#define SUMX,y) x+y

int main()

{
int a=5 b=86, c;

c =5=* SUMa,b);
}

@ What is the value of variable ¢?

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 37/64

Some helpful “tricks”

@ Itis possible to define a macro for obtaining the literal name of a variable:

‘ #define LIT_VAR(X) #x

A complete example:

#define PVAR(y) printf("%
#define PPUN(y) printf ("%

%", LIT_VAR(Y), y)
%", LIT_VAR(Y),)

PPUN(&d) ;
PPUN(&x) ;
PVAR(*pi) ;

PVAR(X) ;

point2.c
#i ncl ude <stdio. h>
#define LIT_VAR(a) #a
int main()
{

int d=5;

int x =7

int «pi;

pi = &x;

PVAR(d) ;

PVAR(X) ;

PPUN(pi) ;

= *pi;

PPUN(pi) ;

PVAR(d) ;
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

November 15, 2010

38/64

./examples/11.cpp-examples/point2.c

Include files

@ Include files are used to declare the module interface

@ they contain all declarations that the module wants to export to other
modules

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 39/64

Include files

@ Include files are used to declare the module interface

]

they contain all declarations that the module wants to export to other
modules

@ An include file should not contain definitions, but only declarations!

]

o
o

In fact, suppose an include file nyfi | e. h contains the definition of a
variable i nt a;

Now suppose that the file is included by two modules, na. ¢ and nb. ¢
When compiling ma. ¢, an integer variable is created in memory and is
called a;

When compiling nmb. ¢, another integer variable is created in memory
and is also called a;

the linker will try to put together ma. o and nb. o and will find two
variables with the same name; it may give you an error!!

In any case this is an error!

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 39/64

Include files

@ Include files are used to declare the module interface

@ they contain all declarations that the module wants to export to other
modules
@ Aninclude file should not contain definitions, but only declarations!
@ In fact, suppose an include file nyfi | e. h contains the definition of a
variable i nt a;
@ Now suppose that the file is included by two modules, ma. ¢ and nb. ¢
@ When compiling ma. ¢, an integer variable is created in memory and is
called a;
@ When compiling nb. ¢, another integer variable is created in memory
and is also called a;
@ the linker will try to put together ma. o and nb. o and will find two
variables with the same name; it may give you an error!!
@ In any case this is an error!
@ What you should do:

@ put the declaration extern int a; innyfile. h;
@ put the definitioni nt a; in one file only, ma. ¢ or nb. c

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 39/64

@ Javavs C — |

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 40/ 64

Summary of differences between Java and C

Java C

@ Portable programs @ Non portable programs
(must be recompiled)

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 41/64

Summary of differences between Java and C

Java C
@ Portable programs @ Non portable programs
@ Declaration and definition (must be recompiled)
coincide (no need for @ Itis possible to declare a
include files) variable (or a function) and

later define it (difference
between .c and .h)

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 41/64

Summary of differences between Java and C

Java C
@ Portable programs @ Non portable programs
@ Declaration and definition (must be recompiled)
coincide (no need for @ Itis possible to declare a
include files) variable (or a function) and
all variables and functions between .c and .h)
are defined inside classes @ Variables and functions

can be in the global scope

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 41/64

Summary of differences between Java and C

Java C

@ Portable programs @ Non portable programs

@ Declaration and definition (must be recompiled)
coincide (no need for @ Itis possible to declare a
include files) variable (or a function) and

@ There is no global scope, later define it (difference
all variables and functions between .c and .h)
are defined inside classes @ Variables and functions

@ It is not possible to hide a can be in the global scope
variable @ Itis possible to hide a

variable inside a scope

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 41/64

Summary of differences between Java and C

Java C
@ Portable programs

@ Declaration and definition
coincide (no need for

@ Non portable programs
(must be recompiled)

@ Itis possible to declare a

G. Lipari (Scuola Superiore Sant'/Anna)

include files)

There is no global scope,
all variables and functions
are defined inside classes

It is not possible to hide a
variable

Array bounds are checked
at run-time and an
exception is raised for
index out of bound

Introduction to C++

variable (or a function) and
later define it (difference
between .c and .h)

Variables and functions
can be in the global scope
It is possible to hide a
variable inside a scope

There is no check at run
time for array bounds

November 15, 2010 41 /64

@ C pointers

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 42 /64

@ A pointer is a special type of variable that can hold memory

addresses
@ Syntax
char c; /1 a char variable
char =*pc; /1 pointer to char variable
int i; /1 an integer variable
int *pi; /1 pointer to an int variable
doubl e d; /1 double variable
double *pd; // pointer to a double variable

@ In the declaration phase, the * symbol denotes that the variable
contains the address of a variable of the corresponding type

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 43 /64

Syntax - cont.

@ A pointer variable may contain the address of another variable
int i;
int *pi;

pi = &;

@ The & operator is used to obtain the address of a variable.
@ It is called the reference operator

@ Warning: in C++ a reference is a different thing! Right now, pay
attention to the meaning of this operator in C.

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 44/ 64

Indirection

@ The reverse is called indirection operator and it is denoted by *

int j;
j ==*pi; [l get the value pointed by p

*pi = 7; /] store a value in the address stored in pi

@ In the first assignment, j is assigned the value present at the
address pointed by pi .

@ In the second assignment, the constant 7 is stored in the location
contained in pi

@ +pi is an indirection, in the sense that is the same as the variable
whose address is in pi

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 45/ 64

Example

i 5 23456

23460

23464

23468

23472

23476

i 23480

23484

23488

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 46/ 64

Example

@ pi is assigned the address of
j

i 5 23456

23460

23464

23468

23472

pl 23476

i 23480

23484

23488

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

November 15, 2010 46/ 64

Example

@ pi is assigned the address of
j

i 5 23456

23460

23464

23468

23472

pi 23456 23476

i 23480

23484

23488

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

November 15, 2010 46/ 64

@ pi is assigned the address of
i

@ | is assigned the value of the i 5 23456]
variable pointed by pi

23460

23464

23468

23472

pi 23456 23476

j 5 23480

23484

23488

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

November 15, 2010 46/ 64

pointl.c

int nain()

{
int d 5;
int x =7,
int *pi;

pi = &;

printf("9%\n", &x);
printf("9%\n", &d);
printf("%\n", pi);
printf("%\n", *pi);
[lpi = d,
d = *pi;
printf("%\n", pi);

printf("%\n", x);
printf("%\n", d);

/'l conpilation error

The commented line is a
syntax error

@ We are assigning a
variable to a pointer

@ The programmer
probably forgot a & or a *

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 15, 2010 47 | 64

./examples/11.cpp-examples/point1.c

Arguments of function

@ In C, arguments are passed by value

@ With the exception of arrays
@ However, we can use pointers to pass arguments by reference
void swap(int xa, int xb)

{

int tnp;

tn'p = *q;
*a = *b;

*b = tnp;

}
int nain()

int x
inty

1;
2,

swap(&x, &y);

PVAR(x) ;
PVAR(Y) ;

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 48 /64

Pointers and arrays

@ An array denotes a set of consecutive locations in memory

@ In C, the name of an array is seen as a constant pointer to the first
location

@ Therefore, it can be assigned to a pointer, and used as a pointer
int array[5] = {1, 2, 4, 6, 8};

int *p;

int d;

a:

p ;
*P; /1 this expression has value 1

d

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 49/ 64

Pointer arithmetic

@ It is possible to modify a pointer (i.e. the address) by
incrementing/decrementing it

int a[5] = {1, 2, 3, 4, 5};

int xp;

p = aq /1 p now points to the first
/1 element in the array

p++; /1 p now points to the second
/1 element (a[1l])

p+=2; /1 p now points to the fourth
/1 element (a[3])

@ Notice that in p++, p is incremented by 4 bytes, because p is a
pointer to integers (and an integer is stored in 4 bytes)

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 50/ 64

Array and pointers

@ Array are constant pointers, they cannot be modified
int a[10];

int d,

int xp;

p = &d;

a

p; // conpilation error, a cannot be nodified

@ Remember that the name of an array is not a variable, but rather
an address!

@ It can be used in the right side of an assignment expression, but
not in the left side.

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 51/64

Equivalent syntax

@ A pointer can be used to access the elements of an array in
different ways:

int a[10];

int xp;

p=a

*(p+l); /'l equivalent to a[1]

int i;

*(p+i); /1 equivalent to a[i]
plil; /1 this is a valid syntax
*(a+i); /1 this is also valid

@ In other words, a and p are equivalent also from a syntactic point o
view

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 52 /64

Pointer arithmetic - Il

@ The number of bytes involved in a pointer operator depend on the
pointer type
@ An operation like p++ increments the pointer by

@ 1 byte if p is of type char
@ 2 bytes if p is of type f | oat
@ 4 bytesif p is of type i nt

@ To obtain the size of a type, you can use the macro si zeof ()

int a, b;
char c;
doubl e d;

a
a

sizeof (int); // ais 4 after the assignnent
si zeof (c); I/l cis a char, so ais assigned 1

@ si zeof () must be resolved at compilation time (usually during
preprocessing)

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 53 /64

Pointer arithmetic - Il

@ Pointer arithmetic is also applied to user-defined types;

struct.c

#i ncl ude <stdio. h>

typedef struct mystruct {
int a;
doubl e b[5];
char n[10];

H

int main()
struct nystruct array[10];
printf("size of mystruct: %d\n", sizeof(struct nystruct));
struct nystruct *p = array;
printf("p = %\n", p);
p++;
printf("p = %\n", p);

}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010

./examples/11.cpp-examples/struct.c

@ In C/C++, the keyword voi d denotes something without a type
@ For example the return value of a function can be specified as void,
to mean that we are not returning any value
@ When we want to define a pointer that can point to a variable of
any type, we specify it as a void pointer

voi d *p;

int d;

p = &d;

p++; /'l error, cannot do arithmetic
/!l with a void pointer

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 55/64

Pointers and structures

@ When using pointers with structures, it is possible to use a special
syntax to access the fields

struct point2D {
doubl e x, vy;
int z;

b

poi nt 2D vert ex;
poi nt 2D *pv; /'l pointer to the structure

pv = &vertex;
(*pv).x; /1 the follow ng two expressions
p- >X; /] are equival ent

@ Therefore, to access a field of the structure through a pointer, we
can use the arrow notation p- >x

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 56 / 64

Java vs C - Il

@ There are no pointers in Java

@ Java references are similar to pointers

@ However, you cannot do arithmetic with references

@ Also, you cannot directly address memory in Java (except by using
special OS interface, for example for accessing external devices)

@ Pointers are low-level

@ They allow a C programmer to access memory directly

@ However, there is no run-time check on how the programmer uses
them, for efficiency reasons

@ They can be the source of many difficult and subtle errors

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 57 /64

@ Stack memory

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 58 /64

Memory allocation

@ We have discussed the rules for the lifetime and visibility of
variables

@ Global variables are defined outside of any function. Their lifetime
is the duration of the program: they are created when the program
is loaded in memory, and deleted when the program exits

@ Local variables are defined inside functions or inside code blocks
(delimited by curly braces { and }). Their lifetime is the execution of
the block: they are created before the block starts executing, and
destroyed when the block completes execution

@ Global and local variables are in different memory segments ,
and are managed in different ways

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 59 /64

Memory segments

@ The main data segments of a program are shown below

@ The BSS segment contains
global variables . Itis
divided into two segments,
one for initialised data (i.e.
data that is initialised when
declared), and non-initialised
data.

@ The size of this segment is
statically decided when the
program is loaded in
memory, and can never
change during execution

HEAP <—+— Dynamic memory
STACK <=—t— Local variables
BSS <——1— Global variables

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

November 15, 2010 60/ 64

Memory segments

@ The main data segments of a program are shown below

@ The STACK segment
contains local variables
@ Its size is dynamic: it can
grow or shrink, depending
on how many local
variables are in the current pss P e
block

HEAP <—+t— Dynamic memory

STACK =—4— Local variables

Introduction to C++ November 15, 2010 60 /64

G. Lipari (Scuola Superiore Sant'/Anna)

Memory segments

@ The main data segments of a program are shown below

@ The HEAP segment contains HEAP [SSsi—(Dynamicmemary
dynamic memory thatis
managed directly by the STACK <—f— Local variables
programmer (we will see it
later)

BSS <——— Global variables

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

November 15, 2010 60/ 64

@ Here is an example:

int a=5; // initialised global data
int b; /1 non initialised global data
int f(int i) /1 i, d and s[] are local variables
/1 will be created on the stack when the
doubl e d; /1 function f() is invoked
char s[] = "Lipari";
}
int nain()
int s, z; /Il local variables, are created on the stack
/1 when the programstarts
f(); /1 here f() is invoked, so the stack for f() is created
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 61/64

@ A Stack is a data structure with two operations
@ push data on top
@ pop data from top
@ The stack is a LIFO (last-in-first-out) data structure

@ The stack memory is managed in the same way as the data
structure

@ When a function is called, all parameters are pushed on to the
stack, together with the local data

@ The set of function parameters, plus return address, plus local
variables is called Stack Frame of the function

@ The CPU internally has two registers:

@ SPis a pointer to the top of the stack

@ BP is a pointer to the current stack frame
@ while the function is working, it uses BP to access local data
@ when the function finishes, all data is popped from the stack

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 62 /64

—F Isp
int f(int i)
— | BP
doubl e d;
char s[] = "Lipari";
return i;
} *
| — I
int main()
{
int s, z;
f(s); z
S
} P
BP -

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 63 /64

—F Isp
int f(int i)
— | BP
doubl e d;
char s[] = "Lipari";
return i;
} *
L |
int main()
{
int s, z; B
i
f(s); z
S
} P
BP -

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 63 /64

—F Isp
int f(int i)
— | BP
doubl e d;
char s[] = "Lipari";
return i;
}
W
int main()
{ (-
; . P
int s, z; BP -
i
f(s); z
S
} P
BP

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 63 /64

—F Isp
int f(int i)
— | BP
doubl e d;
char s[] = "Lipari";
return i;
) N :
int main() =
{ d
int s, z; P
’ ’ BP -
i
f(s); z
S
} P
BP

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 63 /64

int f(int i)

doubl e d;

char s[] = "Lipari";

return i;
}

int main()
{

int s, z;

f(s);

-

SP

| BP

s[6]=0

s[] =

s[0] =L

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 15, 2010

63 /64

int f(int i) e S =
{
doubl e d; = | BP
char s[] = "Lipari"; SI61=0
;’éiurn i;
} I S
int main() ROE
. d
int s, z; P
BP !
f(s); i
Y4
S
} 1P
BP -

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 63 /64

int f(int i) e S =
{
doubl e d; = B8P
char s[] = "Lipari"; SIE1=0
;’éiurn i;
}
int main() L I s[1] ="
s[o]="LU
. d
int s, z; P
BP
f(s); i <!
z
S
! IP
BP -

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 63 /64

Stack frames

@ Every time we call a function we generate a different stack frame
@ Every stack frame corresponds to an instance of the function
@ Every instance has its own variables, different from the other
instances
@ Stack frame is an essential tool of any programming language
(including Java)

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 15, 2010 64 /64

	C Programs
	Declarations and definitions
	Functions
	Visibility, scope and lifetime
	Preprocessor
	Java vs C – I
	C pointers
	Stack memory

