
Object Oriented Software Design
The C language

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

November 15, 2010

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 1 / 64

http://retis.sssup.it/~lipari

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 2 / 64

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 3 / 64

The C language

C++ is an object oriented language built upon C
Before looking at C++, let’s have a quick look at how a C program is
structured

The C language is a compiled language
The C source code is transformed into an executable program
Unlike a Java compiler program (i.e. a set of .class files which
needs a Java Virtual Machine), an executable file can be executed
directly by the OS
This means that an executable program is not portable

A.class

MyClass.class

MyStack.class

JVM
myporog

OS

HW

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 4 / 64

Hello world in C

Let’s start with a classic:

hello.c

#include <stdio.h>
int main()
{

printf("Hello world!\n");
return 0;

}

include includes definitions for library functions (in this case, the
printf() function is defined in header file stdio.h)

main function this function must always be present in a C program. It
is the first function to be invoked (the entry point)

return end of the function, returns a value to the shell

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 5 / 64

./examples/11.cpp-examples/hello.c

Compiling the code

The translation from high-level language to binary is done by the
compiler (and the linker)

the compiler translates the code you wrote in the source file
(hello.c)
the linker links external code from libraries of existing functions (in
our case, the printf() function for output on screen)

compile &

link
executable

std library

(printf)

hello.c

gcc hello.c −o hello hello

Figure: Compiling a file

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 6 / 64

Compiling a C program

A C program consists of one ore more source files, each one is
called a compilation unit or module

Each unit is compiled separately, and a object file is generated as
a result

All objects files and the libraries are linked together to produce the
executable file

compile

compile

compile

module_a.o

module_b.o

module_c.o

libraries

link myprog

module_a.c

module_b.c

module_c.c

gcc module_a.c

gcc module_b.c

gcc module_c.c

executable

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 7 / 64

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 8 / 64

Declarations, functions, expressions

A C program is a sequence of global declarations and definitions
declarations of global variables and functions
definitions of variables and functions
Examples:

int a; // declaration + definition
int b = 10; // declaration + definition + init
extern int c; // only declaration (no definition)
...
int c; // definition

int f(int); // only declaration

int f(int p) // definition
{

...
}

int g() // declaration + definition
{

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 9 / 64

extern

Keyword extern is used to specify that we are declaring
something without defining it

It is implicit for functions

A function declaration is also called function prototype

Difference from Java

Notice that in Java every declaration is also a definition

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 10 / 64

Statements and expressions

The Java syntax is a derivative of the C syntax
Therefore, in C you find similar statements to the ones you have
already found in Java
for(init ; cond ; expr) statement;
while (cond) statement;
if (cond) statement; else statement;
do statement while (cond);
switch (c) { case a : statement; case b :
statement; }

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 11 / 64

Arrays

Instead of single variables, we can declare arrays of variables of
the same type

They have all the same type and the same name

They can be addressed by using an index

int i;
int a[10];

a[0] = 10;
a[1] = 20;
i = 5;
a[i] = a[i-1] + a[i+1];

Very important: If the array has N elements, index starts at 0,
and last element is at N-1

In the above example, last valid element is a[9]

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 12 / 64

Example

dice.c

#include <stdio.h>
#include <stdlib.h>

int main()
{

int i;
int d1, d2;
int a[13]; /* uses [2..12] */

for (i = 2; i <= 12; i = i + 1) a[i] = 0;

for (i = 0; i < 100; i = i + 1) {
d1 = rand() % 6 + 1;
d2 = rand() % 6 + 1;
a[d1 + d2] = a[d1 + d2] + 1;

}

for(i = 2; i <= 12; i = i + 1)
printf("%d: %d\n", i, a[i]);

return 0;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 13 / 64

./examples/11.cpp-examples/dice.c

Index range

What happens if you specify an index outside the array
boundaries?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 14 / 64

Index range

What happens if you specify an index outside the array
boundaries?

The compiler does
not complain, but you
can get a random
run-time error!

Consider the
following program:
what will happen?

outbound.c

#include <stdio.h>

int main()
{

int i;
int a[10];

for (i=0; i<15; i++) {
a[i] = 0;
printf("a[%d] = %d\n", i, a[i]);

}

printf("Initialization completed!\n");

return 0;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 14 / 64

./examples/11.cpp-examples/outbound.c

Questions

Index out of bounds is a programming error
Why the compiler does not complain?
Why the program does not complain at run-time?

What is the memory allocation of the program? Where is the array
allocated?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 15 / 64

Initialization

Arrays can be initialized with the following syntax

int a[4] = {0, 1, 2, 3};

This syntax is only for static initialization, and cannot be used for
assignment

int a[4];

a = {0, 1, 2, 3}; // syntax error!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 16 / 64

Matrix

Two- and three-dimensional
arrays (matrices):

double mat[3][3];
int cube[4][4][4];

mat[0][2] = 3.5;

Static and dynamic initialisation

matrix.c

#include <stdio.h>

int main()
{

int i;
double mat[3][3] = {

{0, 0, 0},
{0, 0, 0},
{0, 0, 0}

};
mat[0][2] = 3.5;
for (i=0; i<9; i++) {

mat[i/3][i%3] = 2.0;
}
printf("Done\n");
return 0;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 17 / 64

./examples/11.cpp-examples/matrix.c

Structure definition

In many cases we need to aggregate variables of different types
that are related to the same concept

each variable in the structure is called a field

the structure is sometimes called record

Example

struct student {
char name[20];
char surname[30];
int age;
int marks[20];
char address[100];
char country[100];

};

struct student s1;

struct position {
double x;
double y;
double z;

};

struct position p1, p2, p3;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 18 / 64

Accessing data

To access a field of a structure, use the dot notation

#include <math.h>

struct position {
double x;
double y;
double z;

};

struct position p1;
...
p1.x = 10 * cos(0.74);
p1.y = 10 * sin(0.74);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 19 / 64

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 20 / 64

Function definition and declaration

A function is defined by:
a unique name
a return value
a list of arguments (also called parameters)
a body enclosed in curly braces

An example: this function
raises a double number to an
integer power

/* returns the power of x to y */
double power(double x, int y)
{

int i;
double result = 1;

for (i=0; i < y; i++)
result = result * x;

return result;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 21 / 64

Function call

This is how the function is
called.

The formal parameters x
and y are substituted by the
actual parameters (the
values of xx and yy)

power.c

int main()
{

double myx;
int myy;
double res;

printf("Enter x and y\n");
printf("x? ");
scanf("%lg", &myx);
printf("y? ");
scanf("%d", &myy);

res = power(myx, myy);

printf("x^y = %lgt\n", res);
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 22 / 64

./examples/11.cpp-examples/power.c

Parameters

Modifications on local parameters have no effect on the caller

int multbytwo(int x)
{

x = x * 2;
return x;

}

int main()
{

...
i = 5;
res = multbytwo(i);
/* how much is i here? */
...

}

x is just a copy of i

modifying x modifies the copy,
not the original value

We say that in C parameters
are passed by value

There is only one exception to
this rule: arrays

An array parameter is never
copied, so modification to the
local parameter are
immediately reflected to the
original array

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 23 / 64

Array parameters

swap.c

#include <stdio.h>

void swap (int a[])
{

int tmp;
tmp = a[0];
a[0] = a[1];
a[1] = tmp;
return;

}

int main()
{

int my[2] = {1,5}
printf ("before swap: %d %d",

my[0], my[1]);

swap(my);

printf ("after swap: %d %d",
my[0], my[1]);

}

The array is not copied
modification on array a are
reflected in modification on
array my

(this can be understood
better when we study
pointers)

Notice also:
the swap function does not
need to return anything: so
the return type is void
the array my is initialised
when declared

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 24 / 64

./examples/11.cpp-examples/swap.c

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 25 / 64

Definitions

Global variables are variables defined outside of any function

Local variables are defined inside a function
The visibility (or scope) of a variable is the set of statements that
can “see” the variable

remember that a variable (or any other object) must be declared
before it can be used

The lifetime of a variable is the time during which the variable
exists in memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 26 / 64

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 27 / 64

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 27 / 64

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 27 / 64

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

temp is a global variable
scope: all objects defined after temp
lifetime: duration of the program

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 27 / 64

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

temp is a global variable
scope: all objects defined after temp
lifetime: duration of the program

res and s[] are local variables
scope: body of function main
lifetime: duration of the program

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 27 / 64

Global scope

A global variable is declared outside all functions
This variable is created before the program starts executing, and it
exists until the program terminates
Hence, it’s lifetime is the program duration

The scope depends on the point in which it is declared
All variables and functions defined after the declaration can use it
Hence, it’s scope depends on the position

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 28 / 64

Local variables

Local variables are defined inside functions

int g;

int myfun()
{

int k; double a;
...

}

int yourfun()
{

...
}

g is global

k and a are local to myfun()

in function yourfun(), it is possible to use
variable g but you cannot use variable k
and a (out of scope)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 29 / 64

Local variables

Local variables are defined inside functions

int g;

int myfun()
{

int k; double a;
...

}

int yourfun()
{

...
}

g is global

k and a are local to myfun()

in function yourfun(), it is possible to use
variable g but you cannot use variable k
and a (out of scope)

k and a cannot be used in yourfun() because their scope is
limited to function myfun().

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 29 / 64

Local variable lifetime

Local variable are created only when the function is invoked;
They are destroyed when the function terminates

Their lifetime corresponds to the function execution
Since they are created at every function call, they hold only
temporary values useful for calculations

int fun(int x)
{
int i = 0;

i += x;
return i;

}

int main()
{
int a, b;

a = fun(5);
b = fun(6);

...
}

i is initialized to 0 at every fun() call

at this point, a is 5 and b is 6;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 30 / 64

Modifying lifetime

To modify the lifetime of a local variable, use the static keyword

int myfun()
{

static int i = 0;

i++;

return i;
}

int main()
{

printf("%d ", myfun());
printf("%d ", myfun());

}

This is a static variable: it is initialised
only once (during the first call), then the
value is maintained across successive
calls

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 31 / 64

Modifying lifetime

To modify the lifetime of a local variable, use the static keyword

int myfun()
{

static int i = 0;

i++;

return i;
}

int main()
{

printf("%d ", myfun());
printf("%d ", myfun());

}

This is a static variable: it is initialised
only once (during the first call), then the
value is maintained across successive
calls

This prints 1

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 31 / 64

Modifying lifetime

To modify the lifetime of a local variable, use the static keyword

int myfun()
{

static int i = 0;

i++;

return i;
}

int main()
{

printf("%d ", myfun());
printf("%d ", myfun());

}

This is a static variable: it is initialised
only once (during the first call), then the
value is maintained across successive
calls

This prints 1

This prints 2

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 31 / 64

Hiding

It is possible to define two variables with the same name in two
different scopes

The compiler knows which variable to use depending on the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 32 / 64

Hiding

It is possible to define two variables with the same name in two
different scopes

The compiler knows which variable to use depending on the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 32 / 64

Hiding

It is possible to define two variables with the same name in two
different scopes

The compiler knows which variable to use depending on the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

int i;
int fun1()
{

int i;
i++;

}
int fun2()
{

i++;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 32 / 64

Hiding

It is possible to define two variables with the same name in two
different scopes

The compiler knows which variable to use depending on the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

int i;
int fun1()
{

int i;
i++;

}
int fun2()
{

i++;
}

Increments the
local variable of
fun1()

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 32 / 64

Hiding

It is possible to define two variables with the same name in two
different scopes

The compiler knows which variable to use depending on the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

int i;
int fun1()
{

int i;
i++;

}
int fun2()
{

i++;
}

Increments the
local variable of
fun1()

Increments the
global variable

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 32 / 64

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 33 / 64

Pre-processor

In the first step, the input file is analyzed to process preprocessor
directives
A preprocessor directive starts with symbol #

Example are: #include and #define

After this step, a (temporary) file is created that is then processed
by the compiler

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 34 / 64

Directives

With the include directive, a file is included in the current text file

In other words, it is copied and pasted in the place where the
include directive is stated

With the define directive, a symbol is defined
Whenever the preprocessor reads the symbol, it substitutes it with
its definition
It is also possible to create macros

To see the output of the pre-processor, run gcc with -E option (it
will output on the screen)

gcc -E myfile.c

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 35 / 64

An example
main.c

#include "myfile.h"
#include "yourfile.h"

int d;
int a=5;
int b=6;

int main()
{

double c = PI; // pi grego
d = MYCONST; // a constant
a = SUM(b,d); // a macro
return (int)a;

}

myfile.h

#define MYCONST 76
extern int a, b;
#define SUM(x,y) x+y

yourfile.h

#define PI 3.14
extern int d;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 36 / 64

./examples/11.cpp-examples/main.c
./examples/11.cpp-examples/myfile.h
./examples/11.cpp-examples/yourfile.h

An example
main.c

#include "myfile.h"
#include "yourfile.h"

int d;
int a=5;
int b=6;

int main()
{

double c = PI; // pi grego
d = MYCONST; // a constant
a = SUM(b,d); // a macro
return (int)a;

}

myfile.h

#define MYCONST 76
extern int a, b;
#define SUM(x,y) x+y

yourfile.h

#define PI 3.14
extern int d;

main.c.post

1 "main.c"
1 "<built-in>"
1 "<command-line>"
1 "main.c"
1 "myfile.h" 1

extern int a, b;
2 "main.c" 2
1 "yourfile.h" 1

extern int d;
3 "main.c" 2

int d;
int a=5;
int b=6;

int main()
{

double c = 3.14;
d = 76;
a = b+d;
return (int)a;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 36 / 64

./examples/11.cpp-examples/main.c
./examples/11.cpp-examples/myfile.h
./examples/11.cpp-examples/yourfile.h
./examples/11.cpp-examples/main.c.post

Macros effects

Pay attention to macros, they can have bad effects

#define SUM(x,y) x+y

int main()
{
int a = 5, b = 6, c;

c = 5 * SUM(a,b);
}

What is the value of variable c?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 37 / 64

Some helpful “tricks”

It is possible to define a macro for obtaining the literal name of a variable:

#define LIT_VAR(x) #x

A complete example:
point2.c

#include <stdio.h>

#define LIT_VAR(a) #a
#define PVAR(y) printf("%s = %d", LIT_VAR(y), y)
#define PPUN(y) printf("%s = %p", LIT_VAR(y), y)

int main()
{

int d = 5;
int x = 7;
int *pi;

pi = &x;

PVAR(d); PPUN(&d);
PVAR(x); PPUN(&x);
PPUN(pi); PVAR(*pi);

d = *pi;

PPUN(pi); PVAR(x);
PVAR(d);

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 38 / 64

./examples/11.cpp-examples/point2.c

Include files

Include files are used to declare the module interface
they contain all declarations that the module wants to export to other
modules

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 39 / 64

Include files

Include files are used to declare the module interface
they contain all declarations that the module wants to export to other
modules

An include file should not contain definitions, but only declarations!
In fact, suppose an include file myfile.h contains the definition of a
variable int a;
Now suppose that the file is included by two modules, ma.c and mb.c
When compiling ma.c, an integer variable is created in memory and is
called a;
When compiling mb.c, another integer variable is created in memory
and is also called a;
the linker will try to put together ma.o and mb.o and will find two
variables with the same name; it may give you an error!!
In any case this is an error!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 39 / 64

Include files

Include files are used to declare the module interface
they contain all declarations that the module wants to export to other
modules

An include file should not contain definitions, but only declarations!
In fact, suppose an include file myfile.h contains the definition of a
variable int a;
Now suppose that the file is included by two modules, ma.c and mb.c
When compiling ma.c, an integer variable is created in memory and is
called a;
When compiling mb.c, another integer variable is created in memory
and is also called a;
the linker will try to put together ma.o and mb.o and will find two
variables with the same name; it may give you an error!!
In any case this is an error!

What you should do:
put the declaration extern int a; in myfile.h;
put the definition int a; in one file only, ma.c or mb.c

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 39 / 64

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 40 / 64

Summary of differences between Java and C

Java

Portable programs

C

Non portable programs
(must be recompiled)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 41 / 64

Summary of differences between Java and C

Java

Portable programs

Declaration and definition
coincide (no need for
include files)

C

Non portable programs
(must be recompiled)

It is possible to declare a
variable (or a function) and
later define it (difference
between .c and .h)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 41 / 64

Summary of differences between Java and C

Java

Portable programs

Declaration and definition
coincide (no need for
include files)

There is no global scope,
all variables and functions
are defined inside classes

C

Non portable programs
(must be recompiled)

It is possible to declare a
variable (or a function) and
later define it (difference
between .c and .h)

Variables and functions
can be in the global scope

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 41 / 64

Summary of differences between Java and C

Java

Portable programs

Declaration and definition
coincide (no need for
include files)

There is no global scope,
all variables and functions
are defined inside classes

It is not possible to hide a
variable

C

Non portable programs
(must be recompiled)

It is possible to declare a
variable (or a function) and
later define it (difference
between .c and .h)

Variables and functions
can be in the global scope

It is possible to hide a
variable inside a scope

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 41 / 64

Summary of differences between Java and C

Java

Portable programs

Declaration and definition
coincide (no need for
include files)

There is no global scope,
all variables and functions
are defined inside classes

It is not possible to hide a
variable

Array bounds are checked
at run-time and an
exception is raised for
index out of bound

C

Non portable programs
(must be recompiled)

It is possible to declare a
variable (or a function) and
later define it (difference
between .c and .h)

Variables and functions
can be in the global scope

It is possible to hide a
variable inside a scope

There is no check at run
time for array bounds

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 41 / 64

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 42 / 64

Pointers

A pointer is a special type of variable that can hold memory
addresses

Syntax

char c; // a char variable
char *pc; // pointer to char variable
int i; // an integer variable
int *pi; // pointer to an int variable
double d; // double variable
double *pd; // pointer to a double variable

In the declaration phase, the * symbol denotes that the variable
contains the address of a variable of the corresponding type

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 43 / 64

Syntax - cont.

A pointer variable may contain the address of another variable

int i;
int *pi;

pi = &i;

The & operator is used to obtain the address of a variable.
It is called the reference operator

Warning: in C++ a reference is a different thing! Right now, pay
attention to the meaning of this operator in C.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 44 / 64

Indirection

The reverse is called indirection operator and it is denoted by *

int j;
j = *pi; // get the value pointed by pi

*pi = 7; // store a value in the address stored in pi

In the first assignment, j is assigned the value present at the
address pointed by pi.

In the second assignment, the constant 7 is stored in the location
contained in pi

*pi is an indirection, in the sense that is the same as the variable
whose address is in pi

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 45 / 64

Example

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 46 / 64

Example

pi is assigned the address of
j

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 46 / 64

Example

pi is assigned the address of
j

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

23456

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 46 / 64

Example

pi is assigned the address of
j

j is assigned the value of the
variable pointed by pi

i

23484

23456

23476

23472

23468

23464

23460

23488

23480

5

pi

j

23456

5

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 46 / 64

Examples
point1.c

int main()
{

int d = 5;
int x = 7;
int *pi;

pi = &x;

printf("%p\n", &x);
printf("%p\n", &d);
printf("%p\n", pi);

printf("%d\n", *pi);

//pi = d; // compilation error

d = *pi;

printf("%p\n", pi);
printf("%d\n", x);
printf("%d\n", d);

}

The commented line is a
syntax error

We are assigning a
variable to a pointer

The programmer
probably forgot a & or a *

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 47 / 64

./examples/11.cpp-examples/point1.c

Arguments of function

In C, arguments are passed by value
With the exception of arrays

However, we can use pointers to pass arguments by reference
void swap(int *a, int *b)
{
int tmp;

tmp = *a;

*a = *b;

*b = tmp;
}

int main()
{
int x = 1;
int y = 2;

swap(&x, &y);

PVAR(x);
PVAR(y);

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 48 / 64

Pointers and arrays

An array denotes a set of consecutive locations in memory

In C, the name of an array is seen as a constant pointer to the first
location

Therefore, it can be assigned to a pointer, and used as a pointer

int array[5] = {1, 2, 4, 6, 8};
int *p;
int d;

p = a;
d = *p; // this expression has value 1

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 49 / 64

Pointer arithmetic

It is possible to modify a pointer (i.e. the address) by
incrementing/decrementing it

int a[5] = {1, 2, 3, 4, 5};
int *p;
p = a; // p now points to the first

// element in the array

p++; // p now points to the second
// element (a[1])

p+=2; // p now points to the fourth
// element (a[3])

Notice that in p++, p is incremented by 4 bytes, because p is a
pointer to integers (and an integer is stored in 4 bytes)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 50 / 64

Array and pointers

Array are constant pointers, they cannot be modified

int a[10];
int d;
int *p;

p = &d;

a = p; // compilation error, a cannot be modified

Remember that the name of an array is not a variable, but rather
an address!

It can be used in the right side of an assignment expression, but
not in the left side.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 51 / 64

Equivalent syntax

A pointer can be used to access the elements of an array in
different ways:

int a[10];
int *p;

p = a;

*(p+1); // equivalent to a[1]

int i;

*(p+i); // equivalent to a[i]
p[i]; // this is a valid syntax

*(a+i); // this is also valid

In other words, a and p are equivalent also from a syntactic point o
view

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 52 / 64

Pointer arithmetic - II

The number of bytes involved in a pointer operator depend on the
pointer type
An operation like p++ increments the pointer by

1 byte if p is of type char
2 bytes if p is of type float
4 bytes if p is of type int

To obtain the size of a type, you can use the macro sizeof()

int a, b;
char c;
double d;

a = sizeof(int); // a is 4 after the assignment
a = sizeof(c); // c is a char, so a is assigned 1

sizeof() must be resolved at compilation time (usually during
preprocessing)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 53 / 64

Pointer arithmetic - III

Pointer arithmetic is also applied to user-defined types;

struct.c

#include <stdio.h>

typedef struct mystruct {
int a;
double b[5];
char n[10];

};

int main()
{

struct mystruct array[10];

printf("size of mystruct: %ld\n", sizeof(struct mystruct));

struct mystruct *p = array;

printf("p = %p\n", p);
p++;
printf("p = %p\n", p);

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 54 / 64

./examples/11.cpp-examples/struct.c

void pointers

In C/C++, the keyword void denotes something without a type
For example the return value of a function can be specified as void,
to mean that we are not returning any value

When we want to define a pointer that can point to a variable of
any type, we specify it as a void pointer

void *p;
int d;

p = &d;
p++; // error, cannot do arithmetic

// with a void pointer

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 55 / 64

Pointers and structures

When using pointers with structures, it is possible to use a special
syntax to access the fields

struct point2D {
double x, y;
int z;

};

point2D vertex;
point2D *pv; // pointer to the structure

pv = &vertex;
(*pv).x; // the following two expressions
p->x; // are equivalent

Therefore, to access a field of the structure through a pointer, we
can use the arrow notation p->x

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 56 / 64

Java vs C - II

There are no pointers in Java
Java references are similar to pointers
However, you cannot do arithmetic with references
Also, you cannot directly address memory in Java (except by using
special OS interface, for example for accessing external devices)

Pointers are low-level
They allow a C programmer to access memory directly
However, there is no run-time check on how the programmer uses
them, for efficiency reasons
They can be the source of many difficult and subtle errors

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 57 / 64

Outline

1 C Programs

2 Declarations and definitions

3 Functions

4 Visibility, scope and lifetime

5 Preprocessor

6 Java vs C – I

7 C pointers

8 Stack memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 58 / 64

Memory allocation

We have discussed the rules for the lifetime and visibility of
variables

Global variables are defined outside of any function. Their lifetime
is the duration of the program: they are created when the program
is loaded in memory, and deleted when the program exits
Local variables are defined inside functions or inside code blocks
(delimited by curly braces { and }). Their lifetime is the execution of
the block: they are created before the block starts executing, and
destroyed when the block completes execution

Global and local variables are in different memory segments ,
and are managed in different ways

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 59 / 64

Memory segments

The main data segments of a program are shown below

The BSS segment contains
global variables . It is
divided into two segments,
one for initialised data (i.e.
data that is initialised when
declared), and non-initialised
data.

The size of this segment is
statically decided when the
program is loaded in
memory, and can never
change during execution

BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 60 / 64

Memory segments

The main data segments of a program are shown below

The STACK segment
contains local variables

Its size is dynamic: it can
grow or shrink, depending
on how many local
variables are in the current
block

BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 60 / 64

Memory segments

The main data segments of a program are shown below

The HEAP segment contains
dynamic memory that is
managed directly by the
programmer (we will see it
later) BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 60 / 64

Example

Here is an example:

int a = 5; // initialised global data
int b; // non initialised global data

int f(int i) // i, d and s[] are local variables
{ // will be created on the stack when the

double d; // function f() is invoked
char s[] = "Lipari";
...

}

int main()
{

int s, z; // local variables, are created on the stack
// when the program starts

f(); // here f() is invoked, so the stack for f() is created
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 61 / 64

Stack

A Stack is a data structure with two operations
push data on top
pop data from top

The stack is a LIFO (last-in-first-out) data structure

The stack memory is managed in the same way as the data
structure
When a function is called, all parameters are pushed on to the
stack, together with the local data

The set of function parameters, plus return address, plus local
variables is called Stack Frame of the function

The CPU internally has two registers:
SP is a pointer to the top of the stack
BP is a pointer to the current stack frame

while the function is working, it uses BP to access local data
when the function finishes, all data is popped from the stack

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 62 / 64

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 63 / 64

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 63 / 64

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 63 / 64

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

d

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 63 / 64

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

d
s[0] = ’L’
s[1] = ’i’

...

...

...

...
s[6] = 0

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 63 / 64

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

d
s[0] = ’L’
s[1] = ’i’

...

...

...

...
s[6] = 0

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 63 / 64

Stack

int f(int i)
{

double d;
char s[] = "Lipari";
...
return i;

}

int main()
{

int s, z;

f(s);

}

*

s
z

IP
BP

BP

SP

i

IP
BP

d
s[0] = ’L’
s[1] = ’i’

...

...

...

...
s[6] = 0

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 63 / 64

Stack frames

Every time we call a function we generate a different stack frame
Every stack frame corresponds to an instance of the function
Every instance has its own variables, different from the other
instances

Stack frame is an essential tool of any programming language
(including Java)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 15, 2010 64 / 64

	C Programs
	Declarations and definitions
	Functions
	Visibility, scope and lifetime
	Preprocessor
	Java vs C – I
	C pointers
	Stack memory

