Object Oriented Software Design

References, copy constructor, operators

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

November 24, 2010

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 1/62

@ Stack example

e More on pointers
9 References

@ Copy constructor
e Function overloading

@ Constants

ﬂ Operators

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 2/62

http://retis.sssup.it/~lipari

Stack of integers

@ Let us implement a Stack of integers class

St ack stack;

stack. push(12);
st ack. push(7);

cout << stack. pop();

cout << stack. pop(); 12
37
o4

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 4/62

First, define the interface

cl ass Stack {

pubi | c
St ack() ;

~St ack() ; \

voi d push(int a);
int pop();

i nt peek();

int size();

T Constructor &

destructor

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 5/62

Now the implementation

@ Now we need to decide:
@ how many objects can our stack contain?
@ we can set a maximum limit (like 1000 elements)
@ or, we can dynamically adapt

@ computer memory is the limit

@ Let’s first choose the first solution notice that this decision is
actually part of the interface contract!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 6/62

Fixed size stack

cl ass Stack {

publi c:
Stack(int size);
~St ack();

int push(int a);

voi d pop();

int size();
private:

int *array_;

int top_;

int size_;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 7162

@ The constructor is the place where the object is created and
initialised
@ Every time an object is defined, the constructor is called

automatically
@ There is no way to define an object without calling the constructor

@ Sometime the constructor is called even when you don’t suspect
(for example for temporary objects)

@ It's a nice feature
@ it forces to think about initialization

November 24, 2010 8/62

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++

Constructor for stack

@ The constructor is a function with the same name of the class and
no return value

@ It can have parameters:
@ in our case, the max_si ze of the stack

class Stack { St ack: : Stack(int size)
publi c: {
Stack(int size); array_ = new int[size];
top = O;
} }

Introduction to C++ November 24, 2010 9/62

G. Lipari (Scuola Superiore Sant’Anna)

The new operator

@ In C++, there is a special operator, called newto dynamically
allocate memory

St ack: : Stack(int size)

{
array_ = new int[size]; Creates an array of size inte-
Size_ = size; gers
top_ = 0;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 10/62

@ When the object goes out of scope, it is destructed
@ among the other things, its memory is de-allocated

class Stack { St ack: : ~St ack()

;.Siack(); {
}i s

delete [Jarray_;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010

When are they called?

Stack: : Stack(int size)

{

size_ = size;

array_ = new int[size_];

top_ = 0;

cout << "Constructor has been called\n!";
}

St ack: : ~St ack()

delete [Jarray_;
cout << "Destructor has been call ed\n";

}
int main()
{ cout << "Before bl ock\n";
{ St ack nystack(20);
cout << "after constructor\n";
ébﬁt << "before bl ock end\n";
i:out << "After block\n";
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 12 /62

Default constructor

@ A constructor without parameters is called default constructor

@ if you do not define a constructor, C++ will provide a default
constructor that does nothing

@ if you do provide a constructor with parameters, the compiler does
not provide a default constructor

Error!! No default constructor forl

St ack s1; <_// Stack!

Stack s2(20);

Ok, calling the user-defined construc-l
tor

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 13/62

Default constructor

@ We did not define a default constructor on purpose
@ in our interface, we cannot construct a Stack without knowing its
size
@ However it is possible to define different constructors using
overloading
@ usually, we need to provide several constructors for a class

@ The compiler always provide a destructor, unless the programmer
provides it

November 24, 2010 14 /62

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++

Implementing the Stack interface

@ The complete code:
o ./ exanpl es/ 13. cpp- exanpl es/ st ackl/ st ack. h
o ./ exanpl es/ 13. cpp- exanpl es/ st ackl/ st ack. cpp
o ./ exanpl es/ 13. cpp- exanpl es/ st ackl/ st ack _mai n. cpp
@ Improving the implementation: using a list to remove the need for
the fixed size

o ./ exanpl es/ 13. cpp- exanpl es/ st ack2/ st ack. h
o ./ exanpl es/ 13. cpp- exanpl es/ st ack2/ st ack. cpp
o ./ exanpl es/ 13. cpp- exanpl es/ st ack2/ st ack _mai n. cpp

November 24, 2010 15/62

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++

./examples/13.cpp-examples/stack1/stack.h
./examples/13.cpp-examples/stack1/stack.cpp
./examples/13.cpp-examples/stack1/stack_main.cpp
./examples/13.cpp-examples/stack2/stack.h
./examples/13.cpp-examples/stack2/stack.cpp
./examples/13.cpp-examples/stack2/stack_main.cpp

@ We have seen that we can define a pointer to an object

class A{ ... };

A nyobj ;
A *p = &nyobj ;

@ Pointer p contains the address of myobj

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 17 /62

Pointers - Il

@ Asin C, in C++ pointers can be used to pass arguments to
functions

void fun(int a, int *p)

iﬁi x =0, y =0;
fun(x, &y);

@ After the function call, x=0 whiley = 7
@ X is passed by value (i.e. it is copied into a)

@ y is passed by address (i.e. we pass its address, so that it can be
modified inside the function)

@ Syntax is not very nice

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 18 /62

Another example

pointerarg.cpp

#i ncl ude <i ostreanr
usi ng nanespace std;

class Myd ass {

int a;

public:
M/ dass(int i) { a=1i; }
void fun(int y) { a=1y; }
int get() { return a; }

b

void g(Myd ass c) {
c.fun(b);

}

void h(MyCd ass *p) {
p->fun(5);

}

int main() {
MyCl ass obj (0);

cout << "Before calling g: obj.get() =" << obj.get() << endl;
g(obj);

cout << "After calling g: obj.get() =" << obj.get() << endl;
h(&obj) ;

cout << "After calling h: obj.get() =" << obj.get() << endl;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 19/62

What happened

@ Function g() takes an object, and makes a copy

@ C is a copy of obj
@ g() has no side effects, as it works on the copy

@ Function h() takes a pointer to the object
@ it works on the original object obj , changing its internal value

@ It depends on what you want to do!
@ However, the syntax is not nice

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010

./examples/13.cpp-examples/pointerarg.cpp

More on pointers

@ It is also possible to define pointers to functions:

@ The portion of memory where the code of a function resides has an
address; we can define a pointer to this address

void (*funcPtr)(); /1 pointer to void f();

int (xanotherPtr)(int) /[l pointer to int f(int a);
void f(){...}

funcPtr = & (); // now funcPtr points to f()

funchPtr = f; /'l equival ent syntax

(*funcPtr)(); /1 call the function

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 21/62

Pointers to functions — Il

@ To simplify notation, it is possible to use typedef:

typedef void (*MYFUNC) () ;
t ypedef voi dx (*PTHREADFUN) (void *);

void f() { ... }
void *nythread(void) { ... }

MYFUNC funcPtr = f;
PTHREADFUN pt = nyt hr ead,;

@ Itis also possible to define arrays of function pointers:

void f1(int a) {}
void f2(int a) {}
void fa(int a) {}
void (*#funcTable []) (int) = {f1, f2, 3}

for (int i =0 i<3; ++) (*funcTable[i])(i + 5):

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010

References

@ In C++ it is possible to define a reference to a variable or to an
object

int Xx; /] vari abl e
int & x = x; // reference to vari abl e

M/Cl ass obj; /'l object
MyCl ass & = obj; // reference to object

@ r is a reference to object obj

o WARNING!
@ C++ uses the same symbol & for two different meanings!
@ Remember:
@ when used in a declaration/definition, it is a reference
@ when used in an instruction, it indicates the address of a variable in
memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 24/ 62

References vs pointers

@ There is quite a difference between references and pointers

MyCl ass obj ; /'l the object

MyCl ass & = obj; // a reference

MyCl ass *p; /1l a pointer

p = &obj; /1l p takes the address of obj

obj . fun(); /1 call nethod fun()

r.fun(); /1 call the sane nmethod by reference

p->fun(); /1 call the sane nmethod by pointer

MyCl ass obj 2; /| anot her obj ect

p = & obj 2; /1l p now points to obj2

r = obj 2; /1 conpilation error! Cannot change a reference!
MyCl ass &r2; /1l conpilation error! Reference nust be initialized

@ Once you define a reference to an object, the same reference
cannot refer to another object later!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 25/62

Reference vs pointer

@ In C++, a reference is an alternative name for an object

Pointers References
@ Pointers are like other @ Must be initialised
variables @ Cannot have
@ Can have a pointer to references to void
voi d @ Cannot be assigned
@ Can be assigned @ Cannot do arithmetic

arbitrary values

@ Itis possible to do
arithmetic

@ What are references good for?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 26 /62

Reference example

referencearg.cpp

#i ncl ude <i ostreanr
usi ng nanespace std;

class Myd ass {

int a;

public:
MCass(int i) { a=1i; }
void fun(int y) { a=1y; }
int get() { return a; }

b

void g(MCass c) {

c.fun(b);
}

void h(M/C ass &) {
c.fun(5);
}

int main() {
MyCl ass obj (0);

cout << "Before calling g: obj.get() =" << obj.get() << endl;
g(obj);

cout << "After calling g: obj.get() =" << obj.get() << endl;
h(obj) ;

cout << "After calling h: obj.get() =" << obj.get() << endl;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 27162

./examples/13.cpp-examples/referencearg.cpp

@ Notice the differences:

@ Method declaration: voi d h(Myd ass &c) ; instead of voi d
h(MyCl ass *p);

@ Method call: h(obj) ; instead of h(&obj) ;

@ In the first case, we are passing a reference to an object

@ In the second case, the address of an object

@ References are much less powerful than pointers
@ However, they are much safer than pointers

@ The programmer cannot accidentally misuse references
@ Itis quite easy to misuse pointers

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 28 /62

Copying objects

@ In the previous example, function g() is taking a object by value

void g(MCass c) {...}

g(obj):

@ The original object is copied into parameter c
@ The copy is done by invoking the copy constructor

MyCQ ass(const MyCl ass &r);

@ If the user does not define it, the compiler will define a default one
for us automatically
@ The default copy constructor just performs a bitwise copy of all

members
@ Remember: this is not a deep copy!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 30/62

copyl.cpp

cl ass Myd ass {
int a;
publi c:
MyClass(int i) : a(i) {

cout << "Constructor" << endl;
}

MyCl ass(const MyCl ass &) {
cout << "Copy constructor" << endl;
a=r.a

}

void fun(int y) { a =1vy; }

int get() { return a; }

H

@ Now look at the output

@ The copy constructor is automatically called when we call g()
@ Itis not called when we call h()

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 31/62

@ The copy constructor is called every time we initialise a new object
to be equal to an existing object

MyCl ass obl(2); /1 call constructor
MyCl ass ob2(obl); // call copy constructor
MyCl ass ob3 = ob2; // call copy constructor

@ We can prevent a copy by making the copy constructor private:

class Myd ass {
M/Cl ass(const MyClass &); // can’t be copi ed!
public:

b

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 32/62

./examples/13.cpp-examples/copy1.cpp

const references

@ Let’s analyse the argument of the copy constructor

M/Cl ass(const Myd ass &r);

@ The const means:

@ This function accepts a reference

@ however, the object will not be modified: it is constant

@ the compiler checks that the object is not modified by checking the
constness of the methods

@ As a matter of fact, the copy constructor does not modify the
original object: it only reads its internal values in order to copy them
into the new object

o If the programmer by mistake tries to modify a field of the original
object, the compiler will give an error

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 33/62

Function overloading

@ In C++, the argument list is part of the name of the function

@ this mysterious sentence means that two functions with the same
name but with different argument list are considered two different
functions and not a mistake

@ If you look at the internal name used by the compiler for a
function, you will see three parts:
@ the class name

@ the function name
@ the argument list

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 35/62

Function overloading

class A { ///—'-——ALJ-—Int I
publi c: —/
void f(int a);) _
void f(int a, int b); A f int_int |
voi d f(double g);
Hs ‘\
class B { ~_ __Af_double |
publi c:
void f(int a);
b T Bf int |

@ To the compiler, they are all different functions!
@ beware of the type...

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 36 /62

Which one is called?

A_f_int |
| —
public:

a;
b; .
void f(int a); B f int
void f(int a, int b): | |a f(5): //
voi d f(doubl e g): _/
}l; { b.f(2): T A f double
class B
publ i c: -11(3-0) J _Af_int_int

void f(int a);
b a.f(2.5 3)

class A { A
B

o))

S
-
~
N
w
N—r

~~— _Af int_int

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 37162

Return values

@ Notice that return values are not part of the name

@ the compiler is not able to distinguish two functions that differs only
on return values!

class A {
int floor(double a);
doubl e fl oor (doubl e a);

@ This causes a compilation error
@ it is not possible to overload a return value

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010

Default arguments in functions

@ Sometime, functions have long argument lists
@ some of these arguments do not change often

@ we would like to set default values for some argument
@ this is a little different from overloading, since it is the same function
we are calling!

int f(int a, int b =0);

f(12); /1l it is equivalent to f(12,0);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 39/62

Exercise

@ What happens?

overload.cpp

#i ncl ude <i ostreane

class A {

publi c:

[/ void f(int a, int b=0);
void f(int a);

3

void Ar:f(int a) {
std::cout << "Called f(int)" << std::endl;

}
/lvoid A :f(int a, int b) {
/1 std::cout << "Called f(int, int)" << std::endl;
11}
int main() {
A a;
a.f(5);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 40/ 62

@ In C++, when something is declared const , it means that it
cannot change. Period.
@ Now, the specific uses of const are a lot:
@ Don't to get lost! Keep in mind: const = cannot change
@ Another thing to remember:
@ constants must have an initial (and final) value!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010

./examples/13.cpp-examples/overload.cpp

Constants - |

@ As a first use, const can substitute the use of #defi ne in C

@ whenever you need a constant global value, use const instead of a
define, because it is clean and it is type-safe

#define PI 3.14 /Il C style

const double pi = 3.14; /'l C++ style

@ In this case, the compiler does not allocate storage for pi
@ In any case, the const object has an internal linkage

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 43 /62

Constants - |l

@ You can use const for variables that never change after
initialisation. However, their initial value may be decided at

run-time
const int i = 100;
const int j =i + 10;
int main()
{ ~_ compile-time constants |

cout << "Type a character\n";
const char ¢ = cin.get();

const char c2 = c + ’'a’;
cout << c2; ‘_\
CO++: ™~ run-time constants |

// ERROR! c2 is const!
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 44/ 62

Constant pointers

@ There are two possibilities

@ the pointer itself is constant
@ the pointed object is constant

int a /
int * const u = &a; J

const int =*v; the pointed object is constant
(the pointer can change and
point to another const int!)

the pointer is constant |

@ Remember: a const object needs an initial value!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 45/ 62

const function arguments

@ An argument can be declared constant. It means the function
can’'t change it

@ It's particularly useful with references

class A {
publi c:
int i;
b
void f(const A &a) {
a.i++; /'l error! cannot nodify a;
}

@ You can do the same thing with a pointer to a constant, but the
syntax is messy

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 46 / 62

Passing by const reference

® Remember:

@ we can pass argument by value, by pointer or by reference
@ in the last two cases we can declare the pointer (or the reference)
to refer to a constant object: it means the function cannot change it
@ Passing by constant reference is equivalent, from the semantic
point of view, to passing by value:
@ the original object is not modified
@ however no copy need to be made

@ From an implementation point of view, passing by const reference is
much faster

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 47 | 62

Constant member functions

class A {
int i; .
Sl B & The compiler can call only
int f() const; const member functions on
yoo d90); a const object!
}/oid A f() const const Aa=...:
i++:| _ _ a.f(); Il Ok
/1 ERROR! this function cannot a.g(); /| ERROR! !
/1 nodify the object!
return i;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 48 / 62

Constant return value

@ This is tricky! We want to say: “the object we are returning from
this function cannot be modified”
@ This is meaningless when returning predefined types
@ Will see more on this later

const int fl1(int a) {return ++a;}

int f2(int a) {return ++a;} é___\\\\\\\\\

int i = f1(5); /'l |ega
i = f2(5);

~_ these two functions are
equivalent!

const int j
const int k

f1(5); // also |lega
f2(5); //also |lega

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 49/ 62

Class Complex

@ Suppose you need to write a mathematical library, and you need
to do calculations with the type complex
@ A complex number consists of a real part and an imaginary part

@ Let’s start by writing a class that represent the data type

complex/complex.h

#i ncl ude <i ostreanp

cl ass Conpl ex {
doubl e re;
double im

publi c:
Conpl ex() ;
Compl ex(doubl e a);
Compl ex(doubl e a, double b);
Compl ex(const Conpl ex &a);

doubl e real () const;
doubl e i magi nary() const;
doubl e nodul e() const;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 51/62

./examples/13.cpp-examples/complex/complex.h

Adding two complex

@ Now we need to implement functions to do simple mathematical
operations on objects of type Complex

@ You want to sum, subtract, multiply by a scalar, etc.

@ You want also to assign the result of these operations to other
complex objects

@ To do this, in Java you need to write methods like this:

cl ass Compl ex {
publi c:
Conpl ex add(Conpl ex b) {

re += b.re; im+= b.im
return this;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 52 /62

@ In the previous case, it means that giving an object complex
(t hi s), you can add another object (b) to it

Conmpl ex a, b;

a. add(b) :

@ However, it would be more natural to just use the normal operator
+ = to achieve the same result, as follows

a += b;

@ C++ allows to do this, by using operator overloading

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 53/62

Operator oveloading

@ After all, an operator is like a function

@ binary operator: takes two arguments
@ unary operator: takes one argument

@ The syntax is the following:
@ Conpl ex operator+=(const Conpl ex &C);

@ Of course, if we apply operators to predefined types, the compiler
does not insert a function call

int a = 0;
a += 4,

Complex b = 0;
b += 5; /! function cal

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 54 /62

Complex interface

complex2/complex.h

#i ncl ude <i ostreant

cl ass Conpl ex {
doubl e re;
double im

friend std::ostream &operator<<(std::ostream& o, const Conplex &a);

publi c:
Conpl ex();
Conpl ex(doubl e a);
Conpl ex(doubl e a, double b);
Conpl ex(const Conpl ex &a);

doubl e real () const;
doubl e i magi nary() const;
doubl e nodul e() const;

Conpl ex &oper at or=(const Conpl ex &a);

Conpl ex &oper at or +=(const Conpl ex &c);

Conpl ex &operator-=(const Conpl ex &c);
e

std:: ostream &operat or<<(std::ostream& o, const Conplex &a);
const Conpl ex operator +(const Conpl ex &, const Conplex &b);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 55/62

./examples/13.cpp-examples/complex2/complex.h

Assignment operator

@ The assignment operator, oper at or =() is used to assign one
value to an object

@ The result of the assignment is a value (remember that an
assignment is an expression!)

@ This is why it needs to have a return type

Its parameter is a
constant references
(it will not be
changed by the
function)

Compl ex& Conpl ex: : oper at or =(const Conpl ex &) |

{ \/
re = a.re;
im= a.im
return *this;

}

In this case, it re-
turns the same ob-
ject after the assign-
ment

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 56 /62

Implementation of +=

complex2/complex.cpp

Conpl ex& Conpl ex: : oper at or =(const Conpl ex &a)
{
re = a.re;
im= a.im

return *this;

}

Conpl ex& Conpl ex: : oper at or +=(const Conpl ex &a)
{
re += a.re;
im+4= a.im

return *this;

}

Conpl ex& Conpl ex: : oper at or-=(const Conpl ex &a)
{
re -= a.re;
im-=a.im

return *this;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 57 /62

./examples/13.cpp-examples/complex2/complex.cpp

@ We use the operator << to output our number on the screen

@ It takes a ostream (a class in the iostream library) and a complex,
and returns a reference to a ostream.

@ cout derives from ostream, but also all the classes that implement
files

@ It means that the same function is used also to output on a file

@ It returns a reference to the same ostream after the operation.
This allows chaining!

] 1 '
ostream& oper at or <<(ostream &0, const Conpl ex &a) It's a global function! I
{
0 << "{" <<are<<"," <aim<<"}" Uses the standard <<
return o; operator on the internal
} members and strings

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 58/62

The plus

@ The + operator is slightly different:
@ it does not modify its arguments, but returns a new value

const Conpl ex operator +(const Conpl ex &, const Conpl ex &b)

{
return Conplex(a.real () + b.real (),

a.imaginary() + b.imaginary());

@ It returns a const object

@ The object is created right away (temporary) and will soon be
destroyed

@ Observe the strange use of the constructor!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 59/62

@ Now, let’s observe what happens in this line of code:

Compl ex a, b, c;

a=>b + c;

@ Steps:
@ oper at or +() is called passing the references to b and c
@ The operator will create a temporary object, initialising it to the
values takes from b and c
@ The assignment operator oper at or =() is called on object a,
passing the temporary object by reference
@ The temporary object is destroyed

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010

Why returning a const?

@ We return a const object because we want to avoid things like this:

(atb) += c;

@ The result of the expression on the right is a temporary object, so
it should not be modified

@ However, we invoke a method on it (oper at or +=()), which tries
to modify it

@ Since we declared that the temporary is constant, the compiler will
produce a compilation error
@ error: passing ‘const Complex’ as ‘this’ argument of ‘Complex&
Complex::operator+=(const Complex&)’ discards qualifiers

@ Try to remove the qualifier const and see what happens

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010 61/62

To be member or not to be...

@ In general, operators that modify the object (like ++, +=, - -, etc...)
should be member

@ Operators that do not modify the object (like +, <<, etc,) should not
be member, but global functions (they can be declared f r i end for
optimising access)

@ Not all operators can be overloaded

@ we cannot “invent” new operators,

we can only overload existing ones

we cannot change number of arguments
we cannot change precedence

. (dot) cannot be overloaded

@ All others, YES!

Qo
o
o
o

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 24, 2010

	Stack example
	More on pointers
	References
	Copy constructor
	Function overloading
	Constants
	Operators

