
Object Oriented Software Design
More operators, Automatic conversion, Inheritance, Overloading,

Virtual destructor

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

December 10, 2010

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 1 / 80

http://retis.sssup.it/~lipari

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 2 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 3 / 80

Code reuse

In C++ (like in all OO programming), one of the goals is to re-use
existing code
There are two ways of accomplishing this goal: composition and
inheritance

Composition consists defining the object to reuse inside the new
object
Composition can also expressed by relating different objects with
pointers each other
Inheritance consists in enhancing an existing class with new more
specific code
Until now you’ve seen only composition

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 4 / 80

Syntax

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 5 / 80

Syntax

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

B is derived from A

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 5 / 80

Syntax

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

B is derived from A

Constructor

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 5 / 80

Syntax

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

B is derived from A

Constructor

Inherited member

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 5 / 80

Use of Inheritance

Now we can use B as a special version of A

int main()
{

B b;
cout << b.get() << "\n"; // calls A::get();
b.set(10);
cout << b.g() << "\n";
b.g();
A *a = &b; // Automatic type conversion
a->f();
B *p = new A;

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 6 / 80

Constructor call order

see ord-constr/

Watch out for the order in which things are done inside a
constructor ...

Of course, destructors are called in reverse order

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 7 / 80

Redefinition and name hiding

Of course, we can re-define some function member

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const

{return i;}
int f() const

{return j;}
};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
int get() const

{return i;}
void set(int a)

{j = a; i+= j}
int f() const

{return i;}
};

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 8 / 80

Redefinition and name hiding

Of course, we can re-define some function member

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const

{return i;}
int f() const

{return j;}
};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
int get() const

{return i;}
void set(int a)

{j = a; i+= j}
int f() const

{return i;}
};

int main()
{

B b;
cout << b.get() << "\n";
b.set(10);
cout << b.f() << "\n";

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 8 / 80

Overloading and hiding

There is no overloading across classes

class A {
...

public:
int f(int, double);

}

class B : public A {
...

public:
void f(double);

}

int main()
{

B b;
b.f(2,3.0); // ERROR!

}

A::f() has been hidden
by B::f()

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 9 / 80

Overloading and hiding

There is no overloading across classes

class A {
...

public:
int f(int, double);

}

class B : public A {
...

public:
void f(double);

}

int main()
{

B b;
b.f(2,3.0); // ERROR!

}

A::f() has been hidden
by B::f()

either you redefine exactly
the base version, or you
will hide all the base
members with the same
name

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 9 / 80

Scoping

Suppose that B refines function f(), and that B::f() wants to
invoke A::f()

class A {
public:

int f(int i);
};

class B : public A {
public:

int f(int i) { return A::f(i) + 1;}
};

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 10 / 80

Not everything is inherited

What is not inherited
constructors
assignment operator
destructor

Default constructor, copy constructor and assignment are
automatically synthesized, if the programmer does not provide its
own

when writing these functions, remember to call corresponding
function in the base class!

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 11 / 80

Example

class A {
int i;

public:
A(int ii) : i(ii) {};
A(const A&a) : i(a.i) {}
A &operator=(const A&a) {i = a.i;}

};

class B : public A {
int j;

public:
B(int ii) : A(ii), j(ii+1) {};
B(const B& b) : A(b), j(b.j) {}
B &operator=(const B& b) {

A::operator=(b); j = b.j;
}

};

Wherever you can use
A, you can use B ...

an object of class B isA
subtype of A

This is called
up-casting

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 12 / 80

Graphical representation

This is UML

If we have a reference to B,
we can cast implicitly to a
reference to A

a reference to A cannot be
cast implicitly to B
(downcast)

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 13 / 80

Upcasting and downcasting

Upcasting is a fundamental activity in OO programming (and it is
safe)
Downcasting is not safe at all

the compiler will issue an error when you try to implicitly downcast

To better understand upcasting, we need to introduce virtual
functions

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 14 / 80

Virtual functions

Let’s introduce virtual functions with an example

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 15 / 80

Implementation

class Shape {
protected:

double x,y;
public:

Shape(double x1, double y2);
virtual void draw() = 0;

};

class Circle : public Shape {
double r;

public:
Circle(double x1, double y1,

double r);
virtual void draw();

};

class Rect : public Shape {
double a, b;

public:
Rect(double x1, double y1,

double a1, double b1);
virtual void draw();

};

class Triangle : public Shape {
double a, b;

public:
Triangle(double x1, double y1,

double a1, double b1);
virtual void draw();

};

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 16 / 80

We would like to collect shapes

Let’s make a vector of shapes

vector<Shapes *> shapes;

shapes.push_back(new Circle(2,3,10));
shapes.push_back(new Rect(10,10,5,4));
shapes.push_back(new Triangle(0,0,3,2));

// now we want to draw all the shapes ...

for (int i=0; i<3; ++i) shapes[i]->draw();

We would like that the right draw function is called

However, the problem is that Shapes::draw() is called

The solution is to make draw virtual

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 17 / 80

Virtual functions

class Shape {
protected:

double x,y;
public:

Shape(double xx, double yy);
void move(double x, double y);
virtual void draw();
virtual void resize(double scale);
virtual void rotate(double degree);

};

class Circle : public Shape {
double r;

public:
Circle(double x, double y,

double r);
void draw();
void resize(double scale);
void rotate(double degree);

};

move() is a regular
function

draw(), resize()
and rotate() are
virtual

see shapes/

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 18 / 80

Virtual table

When you put the virtual keyword before a function declaration,
the compiler builds a vtable for each class

Circle – vptr

Rect – vptr

Triangle – vptr

void draw()

void resize()

void rotate()

void draw()

void resize()

void rotate()

void draw()

void resize()

void rotate()

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 19 / 80

Calling a virtual function

When the compiler sees a call to a virtual function, it performs a
late binding, or dynamic binding

each object of a class derived from Shape has a vptr as first
element.

It is like a hidden member variable

The virtual function call is translated into
get the vptr (first element of object)
move to the right position into the vtable (depending on which
virtual function we are calling)
call the function

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 20 / 80

Equivalent in C

It is easy to replicate this behavior in C
it suffices to use array of pointers to functions
However, in C this has to be done explicitly
It is not nice code, and it is easy to introduce bugs

In C++, it is automatic
it is quite efficient,
if you look at the generated assembler code, it is just two additional
assembler instructions with respect to a regular function call

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 21 / 80

Examples

See shapes/

See virtual/

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 22 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 23 / 80

Overloading and overriding

When you override a virtual function, you cannot change the
return value

Simply because the compiler will not know which function to
actually call

There is only one exception to the previous rule:

if the base class virtual method returns a pointer or a reference to
an object of the base class . . .

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 24 / 80

Overloading and overriding

When you override a virtual function, you cannot change the
return value

Simply because the compiler will not know which function to
actually call

There is only one exception to the previous rule:

if the base class virtual method returns a pointer or a reference to
an object of the base class . . .
. . . the derived class can change the return value to a pointer or
reference of the derived class

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 24 / 80

Overload and override

Examples

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 25 / 80

Overload and override

Examples

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

Wrong

class A {
public:

virtual A& f();
};

class C: public A {
public:

virtual int f();
};

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 25 / 80

Private inheritance

A base class can be inherited as private, instead of public:
All the members of the base class become private

class A {
protected:
void f();

public:
int g();

};

class B : public A {
public:
int h();

};

int main() {
B b1;
b1.f(); // NO
b1.g(); // OK

}

class C : private A {
public:
int h();

};

int main() {
C c1;
c1.f(); // NO
c1.g(); // NO

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 26 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 27 / 80

Destructors

What happens if we try to destruct an object through a pointer to
the base class?

class A {
public:

A();
~A();

};

class B : public A {
public:

B();
~B();

};

int main() {
A *p;
p = new B;
// ...
delete p;

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 28 / 80

Virtual destructor

This is a big mistake!
The destructor of the base class is called, which “destroys” only
part of the object
You will soon end up with a segmentation fault (or illegal access), or
memory corruption

To solve the problem, we have to declare a virtual destructor
If the destructors are virtual, they are called in the correct order
See

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 29 / 80

Restrictions

Never call a virtual function inside a destructor!
Can you explain why?

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 30 / 80

Restrictions

Never call a virtual function inside a destructor!
Can you explain why?

You can not call a virtual function inside a constructor
in fact, in the constructor, the object is only half-built, so you could
end up making a wrong thing
during construction, the object is not yet ready! The constructor
should only build the object

Same thing for the destructor
during destruction, the object is half destroyed, so you will probably
call the wrong function

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 30 / 80

Restrictions

Example

class Base {
string name;

public:
Base(const string &n) : name(n) {}
virtual string getName() { return name; }
virtual ~Base() { cout << getName() << endl;}

};

class Derived : public Base {
string name2;

public:
Derived(const string &n) : Base(n), name(n + "2") {}
virtual string getName() {return name2;}
virtual ~Derived() {}

};

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 31 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 32 / 80

Pure virtual functions

A virtual function is pure if no implementation is provided

Example:

class Abs {
public:
virtual int fun() = 0;
virtual ~Abs();

};
class Derived public Abs {
public:
Derived();
virtual int fun();
virtual ~Derived();

};

This is a pure virtual function. No
object of Abs can be instantiated.

One of the derived classes must fi-
nalize the function to be able to in-
stantiate the object.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 33 / 80

Interface classes

If a class only provides pure virtual functions, it is an interface
class

an interface class is useful when we want to specify that a certain
class conforms to an interface
Unlike Java, there is no special keyword to indicate an interface
class
more examples in section multiple inheritance

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 34 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 35 / 80

What happens?

Consider the following code snippet

class Employee {
// ...
Employee& operator=(const Employee& e);
Employee(const Employee& e);

};

class Manager : public Employee {
// ...

};

void f(const Manager& m)
{

Employee e;
e = m;

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 36 / 80

Slicing

Only the “Employee part” of m is copied from m to e.
The assignment operator of Employee does not know anything
about managers!

This is called “object slicing” and it can be a source of errors and
various problems

Solution: pay attention to the assignment operator!

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 37 / 80

Another example

If you upcast to an object instead of a pointer or reference,
something will happen that may surprise you: the object is “sliced”
until all that remains is the subobject that corresponds to the
destination type of your cast.

Consider the code in inheritance/slicing/slicing.cpp

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 38 / 80

Another example

If you upcast to an object instead of a pointer or reference,
something will happen that may surprise you: the object is “sliced”
until all that remains is the subobject that corresponds to the
destination type of your cast.

Consider the code in inheritance/slicing/slicing.cpp

any calls to describe() will cause an object the size of Pet to be
pushed on the stack

the compiler copies only the Pet portion of the object and slices
the derived portion off of the object, like this:

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 38 / 80

slicing cont.

What happens to the virtual function call?

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 39 / 80

slicing cont.

What happens to the virtual function call?

The compiler is smart, and understand what is going on!

the compiler knows the precise type of the object because the
derived object has been forced to become a base object.
When passing by value, the copy-constructor for a Pet object is
used, which initializes the VPTR to the Pet VTABLE and copies only
the Pet parts of the object.
There’s no explicit copy-constructor here, so the compiler
synthesizes one.
Under all interpretations, the object truly becomes a Pet during
slicing.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 39 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 40 / 80

Type conversion

In C and C++, if the compiler sees an expression or function call
using a type that isn’t quite the one it needs, it can often perform
an automatic type conversion from the type it has to the type it
wants.

In C++, you can achieve this same effect for user-defined types by
defining automatic type conversion functions.
These functions come in two flavors:

a particular type of constructor and
an overloaded operator.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 41 / 80

Type conversion via constructor

If you define a constructor that takes as its single argument an
object (or reference) of another type, that constructor allows the
compiler to perform an automatic type conversion.
For example,

class One {
public:

One() {}
};

class Two {
public:

Two(const One&) {}
};

void f(Two) {}

int main() {
One one;
f(one); // Wants a Two, has a One

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 42 / 80

Another example

class AA {
int ii;

public:
AA(int i) : ii(i) {}
void print() { cout << ii << endl;}

};
void fun(AA x) {

x.print();
}
int main()
{

fun(5);
}

The integer is “converted” into an object of class AA

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 43 / 80

Preventing implicit conversion

To prevent implicit conversion, we can declare the constructor to
be explicit

class AA {
int ii;

public:
explicit AA(int i) : ii(i) {}
void print() { cout << ii << endl;}

};
void fun(AA x) {

x.print();
}
int main()
{

fun(5); // error, no implicit conversion
fun(AA(5)); // ok, conversion is explicit

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 44 / 80

Type conversion through operator

This is a very special kind of operator:

class Three {
int i;

public:
Three(int ii = 0, int = 0) : i(ii) {}

};

class Four {
int x;

public:
Four(int xx) : x(xx) {}
operator Three() const { return Three(x); }

};

void g(Three) {}

int main() {
Four four(1);
g(four);
g(1); // Calls Three(1,0)

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 45 / 80

Differences

With the constructor technique, the destination class is performing
the conversion;

creating a single-argument constructor always defines an automatic
type conversion (even if it’s got more than one argument, if the rest
of the arguments are defaulted)
you can turn it off using explicit

With operators, the source class performs the conversion.

The value of the constructor technique is that you can add a new
conversion path to an existing system as you’re creating a new
class.
In addition, there is no way to use a constructor conversion from a
user-defined type to a built-in type, this is possible only with
operator overloading

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 46 / 80

An useful example

How to convert a “String” class to char *

#include <cstring>
#include <cstdlib>
#include <string>
using namespace std;

class Stringc {
string s;

public:
Stringc(const string& str = "") : s(str) {}
operator const char*() const {

return s.c_str();
}

};

int main() {
Stringc s1("hello"), s2("there");
strcmp(s1, s2); // Standard C function
strspn(s1, s2); // Any string function!

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 47 / 80

Problems with conversion

The first problems happens when someone uses both constructor
and operator

class Orange; // Class declaration

class Apple {
public:

operator Orange() const; // Convert Apple to Orange
};

class Orange {
public:

Orange(Apple); // Convert Apple to Orange
};

void f(Orange) {}

int main() {
Apple a;

//! f(a); // Error: ambiguous conversion
}

Just don’t do it
G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 48 / 80

Multiple conversions

This is somewhat called fan-out

class Orange {};
class Pear {};

class Apple {
public:

operator Orange() const;
operator Pear() const;

};

// Overloaded eat():
void eat(Orange);
void eat(Pear);

int main() {
Apple c;

//! eat(c);
// Error: Apple -> Orange or Apple -> Pear ???

}

Again: don’t do it, don’t put yourself into troubled waters

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 49 / 80

Brain teaser

class Fi {};

class Fee {
public:

Fee(int) {}
Fee(const Fi&) {}

};

class Fo {
int i;

public:
Fo(int x = 0) : i(x) {}
operator Fee() const { return Fee(i); }

};

int main() {
Fo fo;
Fee fee = fo;

}

How many functions calls in the instruction Fee fee = fo;?

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 50 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 51 / 80

Virtual operator overloading

You can make operators virtual just like other member functions
However, implementing virtual operators may often become
confusing

because you may be operating on two objects, both with unknown
types

For example, consider a system that deals with matrices, vectors
and scalar values, all three of which are derived from class Math

We want to make the operator* a virtual function, so that we can
transparently call the correct function when multiplying two objects
However, the actual virtual function that is called depends on the
type of the left operand of the operator*
How to make it depend also on the right operand?

see multiple_dispatch/

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 52 / 80

An example

class Matrix : public Math {
public:

Math& operator*(Math& rv) {
return rv.multiply(this);

}
Math& multiply(Matrix*) {

cout << "Matrix * Matrix" << endl;
return *this;

}
Math& multiply(Scalar*) {

cout << "Scalar * Matrix" << endl;
return *this;

}
Math& multiply(Vector*) {

cout << "Vector * Matrix" << endl;
return *this;

}
};

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 53 / 80

All cases

Basically, we build a matrix of cases:
when the left operand is a Matrix, the right operand can be:

a Matrix
a Scalar
a Vector

same for Vector and Scalar

Matrix
Scalar
Vector

Matrix Scalar Vector

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 54 / 80

Multiple dispatch

This technique is called multiple dispatch
The first dispatch is cause by the virtual operator*, which depends
on the left operand (rows in the matrix)
the second dispatch depends on the right operand, and it is
performed by a second virtual function multiply.

This technique is not so common, but may be useful in some
cases.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 55 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 56 / 80

Multiple inheritance

A class can be derived from 2 or more base classes

C inherits the members of A and B

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 57 / 80

Multiple inheritance

Syntax

class A {
public:

void f();
};

class B {
public:

void f();
};

class C : public A, public B
{

...
};

If both A and B define two
functions with the same
name, there is an
ambiguity

it can be solved with the
scope operator

C c1;

c1.A::f();
c1.B::f();

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 58 / 80

Why multiple inheritance?

Is multiple inheritance really needed?
There are contrasts in the OO research community
Many OO languages do not support multiple inheritance
Some languages support the concept of “Interface” (e.g. Java)

Multiple inheritance can bring several problems both to the
programmers and to language designers

Therefore, the much simpler interface inheritance is used (that
mimics Java interfaces)

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 59 / 80

Interface inheritance

It is called interface inheritance when an onjecy derives from a
base class and from an interface class

A simple example

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 60 / 80

Interface and implementation inheritance

In interface inheritance
The base class is abstract (only contains the interface)
For each method there is only one final implementation in the
derived classes
It is possible to always understand which function is called

Implementation inheritance is the one normally used by C++
the base class provides some implementation
when inheriting from a base class, the derived class inherits its
implementation (and not only the interface)

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 61 / 80

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 62 / 80

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 62 / 80

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 62 / 80

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,
from which class does D inherit the method: B, or C?

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 62 / 80

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,
from which class does D inherit the method: B, or C?
In C++ this is solved by using keyword “virtual” when inheriting from
a class

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 62 / 80

Virtual base class

If you do not use virtual inheritance

class A {...};
class B : public A {...};
class C : public A {...};
class D : public B, public C
{

...
};

With public inheritance the
base class is duplicated

To use one of the methods of
A, we have to specify which
“path” we want to follow with
the scope operator

Cannot upcast!

see minher/duplicate.cpp
G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 63 / 80

Virtual base class

class A {...};
class B : virtual public A {...};
class C : virtual public A {...};
class D : public B, public C {...};

With virtual public inheritance
the base class is inherited only
once

see minher/vbase.cpp for an
example

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 64 / 80

Initializing virtual base

The strangest thing in the previous code is the initializer for Top in
the Bottom constructor.

Normally one doesn’t worry about initializing subobjects beyond
direct base classes, since all classes take care of initializing their
own bases.
There are, however, multiple paths from Bottom to Top,

who is responsible for performing the initialization?

For this reason, the most derived class must initialize a virtual
base.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 65 / 80

Initializing virtual base

The strangest thing in the previous code is the initializer for Top in
the Bottom constructor.

Normally one doesn’t worry about initializing subobjects beyond
direct base classes, since all classes take care of initializing their
own bases.
There are, however, multiple paths from Bottom to Top,

who is responsible for performing the initialization?

For this reason, the most derived class must initialize a virtual
base.
But what about the expressions in the Left and Right constructors
that also initialize Top?

they are ignored when a Bottom object is created
The compiler takes care of all this for you

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 65 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 66 / 80

When inheritance is used

Inheritance should be used when we have a isA relation between
objects

you can say that a circle is a kind of shape
you can say that a rect is a shape

What if the derived class contains some special function that is
useful only for that class?

Suppose that we need to compute the diagonal of a rectangle

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 67 / 80

isA vs. isLikeA

If we put function diagonal() only in Rect, we cannot call it with a
pointer to shape

in fact, diagonal() is not part of the interface of shape

If we put function diagonal() in Shape, it is inherited by Triangle
and Circle

diagonal() does not make sense for a Circle
we should raise an error when diagonal is called on a Circle

What to do?

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 68 / 80

The fat interface

one solution is to put the function in the Shape interface
it will return an error for the other classes like Triangle and Circle

another solution is to put it only in Rect and then make a
downcasting when necessary

see diagonal/ for the two solutions

This is a problem of inheritance! Anyway, the second one it
probably better

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 69 / 80

Downcasting

One way to downcast is to use the dynamic_cast construct

class Shape { ... };

class Circle : public Shape { ... };

void f(Shape *s)
{

Circle *c;

c = dynamic_cast<Circle *>(s);
if (c == 0) {

// s does not point to a circle
}
else {

// s (and c) points to a circle
}

}

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 70 / 80

Dynamic cast

The dynamic_cast() is solved at run-time, by looking inside the
structure of the object

This feature is called run-time type identification (RTTI)

In some compiler, it can be disabled at compile time

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 71 / 80

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Type Conversion

7 Multiple dispatch

8 Multiple inheritance

9 Downcasting

10 LSP

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 72 / 80

Liskov Substitution Principle

Functions that use pointers of references to base classes
must be able to use objects of derived classes without
knowing it.

Barbara Liskov, “Data Abstraction and Hierarchy,” SIGPLAN Notices,
23,5 (May, 1988).

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 73 / 80

Liskov Substitution Principle

Functions that use pointers of references to base classes
must be able to use objects of derived classes without
knowing it.

Barbara Liskov, “Data Abstraction and Hierarchy,” SIGPLAN Notices,
23,5 (May, 1988).

The importance of this principle becomes obvious when you
consider the conse quences of violating it. If there is a function
which does not conform to the LSP, then that function uses a
pointer or reference to a base class, but must know about all the
derivatives of that base class.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 73 / 80

Example of violations of LSP

One of the most glaring violations of this principle is the use of
C++ Run-Time Type Information (RTTI) to select a function based
upon the type of an object.

void DrawShape(const Shape& s)
{

Square *q;
Circle *c;

if (q = dynamic_cast<Square *>(s))
DrawSquare(q);

else if (c = dynamic_cast<Circle *>(s))
DrawCircle(c);

}

Clearly the DrawShape function is badly formed. It must know
about every possible derivative of the Shape class, and it must be
changed whenever new derivatives of Shape are created. Indeed,
many view the structure of this function as anathema to Object
Oriented Design.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 74 / 80

Other examples of violation

there are other, far more subtle, ways of violating the LSP

class Rectangle
{

public:
void SetWidth(double w) {itsWidth=w;}
void SetHeight(double h) {itsHeight=w;}
double GetHeight() const {return itsHeight;}
double GetWidth() const {return itsWidth;}

private:
double itsWidth;
double itsHeight;

};

Now suppose we want to introduce a Square
A square is a particular case of a rectangle, so it seems natural to
derive class Square from class rectangle
Do you see problems with this reasoning?

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 75 / 80

Problems?

Square will inherit the SetWidth and SetHeight functions.
These functions are utterly inappropriate for a Square!

since the width and height of a square are identical.

This should be a significant clue that there is a problem with the
design.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 76 / 80

Fixing it

Suppose we write the code so that when we set the height the
with changes as well, and viceversa.

We have to do the Rectangle members virtual, otherwise it does
not work!

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 77 / 80

Fixing it – the code

class Rectangle
{

public:
virtual void SetWidth(double w) {itsWidth=w;}
virtual void SetHeight(double h) {itsHeight=h;}
double GetHeight() const {return itsHeight;}
double GetWidth() const {return itsWidth;}

private:
double itsHeight;
double itsWidth;

};
class Square : public Rectangle
{

public:
virtual void SetWidth(double w);
virtual void SetHeight(double h);

};
void Square::SetWidth(double w)
{

Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}
void Square::SetHeight(double h)
{

Rectangle::SetHeight(h);G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 78 / 80

The real problem

We changed the interface, not only the behavior!

void g(Rectangle& r)
{

r.SetWidth(5);
r.SetHeight(4);
assert(r.GetWidth() * r.GetHeight()) == 20);

}

The code above was written by a programmer that did not know
about squares

what happens if you pass it a pointer to a Square object?

the programmer made the (at that time correct) assumption that
modifying the height does not change the width of a rectangle.

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 79 / 80

Good design is not obvious

The previous design violates the LSP

A Square is not the same as a Rectangle for some pieces of code

from the behavioral point of view, they are not equivalent (one
cannot be used in place of the other)
The behavior is what is important in software!
See the paper (downloadable from the web site).

G. Lipari (Scuola Superiore Sant’Anna) C++ December 10, 2010 80 / 80

	Inheritance
	Overload and overriding
	Destructor
	Abstract classes
	Copying an object
	Type Conversion
	Multiple dispatch
	Multiple inheritance
	Downcasting
	LSP

