
Exceptions

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna – Pisa

December 17, 2010

http://retis.sssup.it


Outline

1 Handling error conditions

2 Exceptions

3 Hierarchies

4 Cleanup



Error conditions

There can be an error at run-time for various problems:
We discover a bug that arises only on certain values of the
variables
The user has done something wrong
A wrong input value
A wrong behavior of an external device
A failure of the hardware

Errors have different levels of criticality
There are recoverable errors, which allow the program to
continue or to re-try the last operation
There are unrecoverable errors, the program must exit in a
clean way

The problem is what to do when we discover an error at
run-time



Error location

An error can arise in a module, in a function very deep in
the call stack
Rarely we can handle the error at that level

It is much common to report the error to the upper layers

The error conditions should be part of the interface of a
module

The module reports (raises) the error
The user of the module receives the error and decides what
to do



Error treatment

How to signal that an error has happened?
1 the function returns an error code
2 the function returns a generic error condition, and set a

global variable with the error code
3 just exit the program

In the first two cases we need to write a lot of
special-purpouse code for handling errors



Example of error treatment

Suppose we decide to follow method 1 (return an error
code)

int f() {...}

int main()
{
int err;
...
err = f();
if (err < 0) { // error !

if (err == ERR_CODE_A) // handle case A
else if (err == ERR_CODE_B) // handle case B
...

}
}

The above code has to be repeated for every function call
that can raise an error!



Error Forwarding
Also, sometimes the error has to be forwarded to upper
layers

int f() {...}

int g()
{
int err;
...
err = f();
if (err < 0) { //error !

if (err == ERR_CODE_A) {
// handle case A locally

}
else if (err == ERR_CODE_B) {

// forward case B
return ERR_CODE_B;

}
...

}

int main()
{
int err;
...
err = g();
if (err < 0) {

//error !
}

}



Other examples

see stack/ and list/

list contains an operator[] for random access in the list

What if the user specifies an out-of-range index?
we can specify a special “error-return-value”
or we can print the error and call exit();

Neither of the two options is satisfactory!



Outline

1 Handling error conditions

2 Exceptions

3 Hierarchies

4 Cleanup



Exceptions

An exception is an object of a class representing an
exceptional occurrence
This way, C++ uses the class mechanisms (like
inheritance, etc.) to implement exceptions

The exception class has nothing to do with the other
classes in the program
An exception can be thrown with the throw keyword
see exc_stack/



Try/catch

An exception object is thrown by the programmer in case
of an error condition

An exception object can be caught inside a try/catch block

try {
//
// this code can generate exceptions
//

} catch (ExcType1& e1) {
// all exceptions of ExcType1 are handled here

}



Try/catch

If the exception is not caught at the level where the
function call has been performed, it is automatically
forwarded to the upper layer

Until it finds a proper try/catch block that cathes it
or until there is no upper layer (in which case, the program
is aborted)



More catches

It is possible to put more catch blocks in sequence

they will be processed in order, the first one that catches
the exception is the last one to execute

try {
//
// this code can generate exceptions
//

} catch (ExcType1&e1) {
// all exceptions of ExcType1

} catch (ExcType2 &e2) {
// all exceptions of ExcType2

} catch (...) {
// every exception

}



Re-throwing

It is possible to re-throw the same exception that has been
caught to the upper layers

catch(...) {
cout << "an exception was thrown" << endl;
// Deallocate your resource here, and then rethrow
throw;

}



Terminate
In case of abort, the C++ run-time will call the terminate(),
which calls abort()

It is possible to change this behavior

#include <exception>
#include <iostream>
using namespace std;

void terminator() {
cout << "I’ll be back!" << endl;
exit(0);

}
void (*old_terminate)() = set_terminate(terminator);

class Botch {
public:
class Fruit {};
void f() {

cout << "Botch::f()" << endl;
throw Fruit();

}
~Botch() { throw ’c’; }

};

int main() {
try {

Botch b;
b.f();

} catch(...) {
cout << "inside catch(...)" << endl;

}
} ///:~



Outline

1 Handling error conditions

2 Exceptions

3 Hierarchies

4 Cleanup



Hierarchy of exceptions

Exceptions can be organized in a hierarchy

class MathExc {
string error;
string where;

public:
MathErr(const string &e, const string &w) :
error(e), where (w)
{}

virtual string what() { return error + " " + where;}
};

class LogErr : public MathErr {
public:

LogErr() :
MathErr("Log of a negative number", "log module"),
n(a)
{}

}



Inheritance

double mylog(int a)
{
if (a < = 0) throw LogErr();
else return log(double(a));

}

void f(int i)
{
mylog(i);

}

...

try {
f(-5);

} catch(MathErr &e) {
cout << e.what() << endl;

}

This code will print “Log of
a negative number - log
module”

you can also pass any
parameter to LogErr, like
the number that cause the
error, or the name of the
function which caused the
error, etc.



Exception specification

It is possible to specify which exceptions a function might
throw, by listing them after the function prototype

Exceptions are part of the interface!

void f(int a) throw(Exc1, Exc2, Exc3);
void g();
void h() throw();

f() can only throw exception Exc1, Exc2 or Exc3

g() can throw any exception

h() does not throw any exception



Listing exceptions

Pay attention: a function must list in the exception list all
exception that it may throw, and all exception that all called
functions may throw

int f() throw(E1) {...}

int g() throw(E2)
{

...
if (cond) throw E2;
...
f();

}



Listing exceptions

Pay attention: a function must list in the exception list all
exception that it may throw, and all exception that all called
functions may throw

int f() throw(E1) {...}

int g() throw(E2)
{

...
if (cond) throw E2;
...
f();

}

It should contain E1 in the list,because
g() calls f()



Exception list and inheritance

if a member function in a base class says it will only throw
an exception of type A,
an override of that function in a derived class must not add
any other exception types to the specification list

because that would break any programs that adhere to the
base class interface.

You can, however, specify fewer exceptions or none at all,
since that doesn’t require the user to do anything
differently.



Exception list and inheritance

It is possible to change the specification of an exception
with a derived exception

class Base {
public:
class BaseException {};
class DerivedException : public BaseException {};
virtual void f() throw(DerivedException) {

throw DerivedException();
}
virtual void g() throw(BaseException) {

throw BaseException();
}

};

class Derived : public Base {
public:
void f() throw(BaseException) {

throw BaseException();
}
virtual void g() throw(DerivedException) {

throw DerivedException();
}

}; ///:~

Which one is correct?



Outline

1 Handling error conditions

2 Exceptions

3 Hierarchies

4 Cleanup



Stack unrolling

void f() {
A a;

if (cond) throw Exc();

}

void g() {
A *p = new A;

if (cond) throw Exc();

}

At this point, a is destructed



Stack unrolling

void f() {
A a;

if (cond) throw Exc();

}

void g() {
A *p = new A;

if (cond) throw Exc();

}

At this point, a is destructed

memory pointed by p is not automatically
deallocated



Cleaning up

C++ exception handling guarantees that as you leave a
scope, all objects in that scope whose constructors have
been completed will have their destructors called.

see exceptions/trace.cpp



Resource management

When writing code with exceptions, it’s particularly
important that you always ask, “If an exception occurs, will
my resources be properly cleaned up?”

Most of the time you’re fairly safe,
but in constructors there’s a particular problem:

if an exception is thrown before a constructor is completed,
the associated destructor will not be called for that object.
Thus, you must be especially diligent while writing your
constructor.

The difficulty is in allocating resources in constructors.
If an exception occurs in the constructor, the destructor
doesn’t get a chance to deallocate the resource.
see exceptions/rawp.cpp



How to avoid the problem

To prevent such resource leaks, you must guard against
these “raw” resource allocations in one of two ways:

You can catch exceptions inside the constructor and then
release the resources
You can place the allocations inside an object’s constructor,
and you can place the deallocations inside an object’s
destructor.

The last technique is called Resource Acquisition Is
Initialization (RAII for short) because it equates resource
control with object lifetime.

Example: wrapped.cpp



PWrap

The difference is the use of the template to wrap the
pointers and make them into objects.

The constructors for these objects are called before the
body of the UseResources constructor,
any of these constructors that complete before an
exception is thrown will have their associated destructors
called during stack unwinding.

The PWrap template shows a more typical use of
exceptions than you’ve seen so far:

A nested class called RangeError is created to use in
operator[] if its argument is out of range.
Because operator[] returns a reference, it cannot return
zero!
An exception mechanism was necessary



Auto ptr

Dynamic memory is the most frequent resource used in a
typical C++ program,

the standard provides an RAII wrapper for pointers to heap
memory that automatically frees the memory.

The auto_ptr class template, defined in the <memory>
header, has a constructor that takes a pointer to its generic
type

The auto_ptr class template also overloads the pointer
operators * and -> to forward these operations to the
original pointer

So you can use the auto_ptr object as if it were a raw
pointer.

Example in exceptions/autoptr.cpp



auto_ptr example

class TraceHeap {
int i;

public:
static void* operator new(size_t siz) {

void* p = ::operator new(siz);
cout << "Allocating TraceHeap object on the heap "

<< "at address " << p << endl;
return p;

}
static void operator delete(void* p) {

cout << "Deleting TraceHeap object at address "
<< p << endl;

::operator delete(p);
}
TraceHeap(int i) : i(i) {}
int getVal() const { return i; }

};

int main() {
auto_ptr<TraceHeap> pMyObject(new TraceHeap(5));
cout << pMyObject->getVal() << endl; // Prints 5

} ///:~


	Handling error conditions
	Exceptions
	Hierarchies
	Cleanup

