
Design Patterns in C++
Concurrency Patterns

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

May 4, 2011

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 1 / 21

http://retis.sssup.it/~lipari


Outline

1 Active Object

2 Implementing Active Objects

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 2 / 21



Problem

Suppose we want to design a simple server
Clients send processing requests to the server gateway
The requests are processed according to their type
While the server processes, clients should not be blocked

In other words, we want to implement an asynchronous method
call:

The client “sends” a request to the server and then continues its
processing
The server starts processing the request concurrently with the
clients
when the server completes the request, the result is stored so that
it can be read later by the client

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 3 / 21



Synchronous method call

In a synchronous method call, there is only one thread of flow
control: the client one

the client code can continue only when the function call returns

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 4 / 21



Asynchronous method call

in an asynchronous method call, both the client and the object
have their own thread of flow control
when a client calls a method on the object, it is actually sending a
message, and after that it can continue its execution
when it wants to get the result, it synchronises on the Future that
contains the result

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 5 / 21



Active Object

The Active Object design pattern decouples method
execution from method invocation for an object

Method invocation should occur in the client’s thread of control

Method execution occurs in the Active Object’s thread of control

Design should make this transparent: it should appear as the
client is invoking and ordinary synchronous method

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 6 / 21



Active Object

The Active Object design pattern decouples method
execution from method invocation for an object

Method invocation should occur in the client’s thread of control

Method execution occurs in the Active Object’s thread of control

Design should make this transparent: it should appear as the
client is invoking and ordinary synchronous method

To solve the latter problem, we must apply the “proxy” pattern

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 6 / 21



Pattern Components

A proxy
Provides an interface to the client, with regular methods

A method request
A hierarchy of classes that models client requests
We need one for each public method in the proxy

An activation list
Contains the method requests object

A scheduler
Decides with request must be processed next

A servant
Processes the requests

A future
Contains the response

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 7 / 21



Proxy

The proxy has the right interface (the one that is seen by the client)

it is an ordinary object

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 8 / 21



Proxy

The proxy has the right interface (the one that is seen by the client)

it is an ordinary object

however, it does not processes requests, but transforms each
request (method call) into an appropriate “method request” object,
which is then inserted into the “activation list”

it also prepares a future, that is an object that will contain the
method return value (once the processing is complete)

the future is initially empty, and it is returned back to the client

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 8 / 21



Method requests

A hierarchy of classes, each one models one request

A method request encodes the method parameters, and contains
a reference to a future (for the response)

it may also contain other specific fields (e.g. priority, preconditions,
etc.)

The proxy creates method requests, and insert them into the
activation list, according to some policy

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 9 / 21



Scheduler and Activation List

The activation list is a protected object
It will be shared between the client’s thread and the scheduler’s
thread
It can be implemented using the Monitor pattern

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 10 / 21



Scheduler and Activation List

The activation list is a protected object
It will be shared between the client’s thread and the scheduler’s
thread
It can be implemented using the Monitor pattern

the Scheduler is a thread that extracts requests from the activation
list and executes them by calling the servant’s methods
The processing order can be customised

For example, according to a FIFO order, or based on priority
The scheduler also checks the guards on the request (i.e.
conditions that must be true before a method can be executed)
It is useful to define a specific separate class for defining the order,
according to the strategy pattern
In this way, the list can be easily customized with a user-defined
scheduling policy

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 10 / 21



The Servant

It has the same interface of the Proxy, and it implements the
actual methods

It can also implement guard methods that are used by the method
request object to understand if they can actually be processed

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 11 / 21



Class diagram

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 12 / 21



Dynamics

A Client invokes a method on the Proxy
the proxy creates a concrete method request,
binds the method’s parameters to it
if necessary, creates a future and binds it to the request
inserts the request into the activation list
if necessary, returns the reference to the future

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 13 / 21



Dynamics

A Client invokes a method on the Proxy
the proxy creates a concrete method request,
binds the method’s parameters to it
if necessary, creates a future and binds it to the request
inserts the request into the activation list
if necessary, returns the reference to the future

The scheduler monitors the activation list
it calls extract() in a loop, and it blocks if the queue is empty
when the extract returns a request object, it first checks the
conditions, by calling the guard() method

this is resolved by calling the preconditions methods on the servant
if the response is true, the scheduler runs it by calling method
call()

this is resolved into a method call to the servant object, the result is
stored in the future

if the response is negative, the request is enqueued again in the list
when no other request is runnable, the scheduler suspends itself

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 13 / 21



Implementation

It is convenient to start implementing and testing the Servant
object

In this way we can test the functionality separately
There is no need to implement synchronisation in the Servant,
because its methods will be automatically serialised by the
Scheduler
In other words, all its methods are called by a single thread, the
Scheduler
However, we have to export part of the state through appropriate
getter methods, so that we can implement the “guards” in the
request objects
these are equivalent to the blocking conditions in a monitor
also, they are “equivalent” to guards in the Rendez-vous
interactions of Ada

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 14 / 21



Implementing the method requests

Method requests are similar to the Command pattern
they encode commands with their parameters and results
they also implement guards
they contain a reference to the Servant

A base class MethodRequest implements the basic methods for
checking the guards and executing the request

they are declared as pure virtual functions, and will be implemented
in the concrete classes
the concrete classes also are in charging of storing the parameters
and the future

Notice that requests are created by the Proxy, but will be
destructed by the Scheduler

For safety, it may be the case to wrap them inside smart pointers
(e.g. shared_ptr<>), to avoid memory leaks or memory
corruption due to exceptions and border cases

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 15 / 21



Proxy

It simply creates the method requests

It may use a factory pattern (for example, factory method, or
abstract factory) for the purpose
if it can be called by several concurrent clients, it may need to be
synchronised (especially if it uses a single factory)

a simple mutex is sufficient
to generalize, we can use a strategized locking pattern, so that the
Proxy can be configured with a regular mutex, or with a null mutex
(when used by only one client), thus reducing overhead

after creating the request, it inserts it into the Activation List

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 16 / 21



Activation List

The Activation List is a queue of requests
It needs to be synchronised because there are at least two threads
using it: the client and the scheduler’s thread
usually implemented using the monitor pattern

when the list is full we can:
Block the client (with or without timeout)
return an error
raise an exception (will be caught in the client’s thread)

The scheduler may need to go through the list to find the first
runnable request

Therefore, we should let it iterate through the list and invoke the
guard() method on every request until it finds a “good” one

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 17 / 21



Future

The future needs to implement a rendez-vous policy
The client that calls the getResult() method too soon will be
blocked waiting for the result to become ready
it will be unblocked when the result has been computed by the
servant
it’s the request object responsibility to fill the result and unblock the
client

in practice, a future is a single-buffer synchronized queue that is
used once

however, we must be careful with its lifetime
the future is created by the proxy as an “empty” buffer and returned
to the client
the client becomes the “owner” of the future (the one responsible
for its deallocation)
however, the pointer to the future is also used by the request object
to store the result
to deal with corner-cases (exceptions, errors, etc.) without memory
corruption and memory leaks, we should use a smart pointer

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 18 / 21



Outline

1 Active Object

2 Implementing Active Objects

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 19 / 21



Implementation of Active Object

The Active Object pattern requires the implementation of many
classes

In particular, for every operation on the Servant (and on the Proxy),
a Message Request class must be prepared
every such class must encode all the parameters of the operation
and maintain a future, and call the appropriate Servant operation

this is a lot of code, that must be written and tested

It is also “boring code”, that could be made automatic
it is a candidate for “code generation tools”

Even code generators like Rapsody require the programmer to
“draw” classes, operations and attributes

another way of generating code it through C++ templates

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 20 / 21



How to implement the request classes

If we want to automatize the production of request classes, we
could take advantage of type lists

We can use type lists to specify a certain number of parameters for
the constructor of the request class
We can also use templates for generating calls to the Servant object

G. Lipari (Scuola Superiore Sant’Anna) Concurrency Patterns May 4, 2011 21 / 21


	Active Object
	Implementing Active Objects

