
Design Patterns in C++
Unit Testing

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

May 5, 2011

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 1 / 15

http://retis.sssup.it/~lipari


Outline

1 Why unit testing

2 Test Driven Development

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 2 / 15



Testing

Testing can never be exhaustive
you can never discover all the program bugs by running tests,
simply because (except in trivial cases), the number of tests to be
executed is badly exponential
nevertheless, testing is useful because you can catch some bugs,
the most evident and probably the most important bugs in a
program
also, tests give some evidence that the program is conforming with
the specification, and this is useful for the customer
therefore, even if testing does not prove correctness, it proves
something, and something is better than nothing!
Every programmer acknowledges that testing is an important
activity in coding

There are many types of testing:
Unit testing, functional testing, integration testing, etc.

Here we discuss Unit Tests, a tool for the programmer

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 3 / 15



Unit testing

Unit testing is a method by which individual units of source code
are tested to determine if they are fit for use

A unit is the smallest testable part of an application, typically a
class or a function
Unit tests are written by programmers as part of their coding work

The idea is to test an unit (a small piece of code) in isolation

The goal is to:
1 Find bugs in code
2 Be able to refactor (i.e. change the code) later, and check that the

unit continues to work
3 Check that modifications to other units (on which the unit under test

depends upon) will not break the assumption and invalidate the
behaviour of the unit

item 2 and 3 are also called regression testing, and are
fundamental to check properties (as the Liskov Substitution
Principle, for example)

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 4 / 15



The problem with test

Writing tests is a boring activity
It works against human nature
it is a lot of additional code to write (set up the environment and all
the necessary objects, write the testing code, run the test, check
the result, etc.)
the test code needs to be maintained and kept constantly in sync
with the tested code
most of this work is not very funny, whereas a programmer wants to
write useful application code (a more inventive and rewarding
activity)

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 5 / 15



Testing is boring

As a consequence, most programmer simply do not test
Testing is time consuming
There is never enough time, so the programmer concentrates on
important things, like producing application code
Tests are code, and we may introduce bugs in testing code,
producing “false positives”
and many other excuses

Forcing programmers to write tests is not the right approach
It is against human nature, so after a while, he will stop anyway

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 6 / 15



Testing is boring

As a consequence, most programmer simply do not test
Testing is time consuming
There is never enough time, so the programmer concentrates on
important things, like producing application code
Tests are code, and we may introduce bugs in testing code,
producing “false positives”
and many other excuses

Forcing programmers to write tests is not the right approach
It is against human nature, so after a while, he will stop anyway
... unless ...

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 6 / 15



Making testing more attractive

The first rule is to make the make the testing activity automatic
The programmer should not spend time in checking the output of
the test to see if everything is ok

Let the PC automatically check the outcome
the only thing the programmer wants to see is: OK, or FAIL, and
not endless screens of text output to be checked

Then, make it easy to run suites of tests
All tests should be grouped in test suites, and it should be possible
to compile and execute them with one single command
as soon as a new test is written, it is added to the test suite and
executed along with the other tests

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 7 / 15



Run tests often

Tests should be written by the programmer before coding the unit
In other words, first write the test, then write the functionality
Run the test after compiling

“Run tests often” means “Run tests every time you compile”
The habit of running tests should be automatically embedded in the
development tool
in addition to “I should make my program compile”, the objective is
now also “I should make all the tests run smoothly”

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 8 / 15



Advantages

Substitute “debugging” with “testing”
Testing is done while coding, while debugging is done later,
Testing is a special kind of coding, while debugging means slowly
going through existing code in a painful way and under pressure
Tests are there to stay, and can be run automatically at any time,
while debugging does not stay, it is wasted time

Certainly, you will be convinced that testing may be more funny
than debugging
Maybe you will also become convinced that testing may be very
productive

If you can drastically reduce the amount of time spent in debugging,
more that the time you spend in testing, then you productivity
increases

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 9 / 15



Testing to addressing change

Testing is a fundamental tool to address the “need for change”

If you need to change existing code (or add additional
code/functionality), you want to make sure that existing tests do
not break
if they do break,

Maybe you introduced a bug in the code that breaks existing code
Maybe you violated an assumption made by existing code (see
LSP)
Maybe you need to change the test because the specification has
changed and the test is not valid any more

In any case, since you test every time you compile, you can
immediately spot the error

As opposed to discovering the bug during integration testing, when
you will need to trace back the problem and debug you code to find
where the problem is

which alternative is more time-consuming?

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 10 / 15



Testing coverage

Of course, you can never do a complete testing coverage in the
unit test, because it is too time consuming

However, you can try to write a few meaningful tests
for example, checking boundary conditions (the source of most
errors)

what if the function needs a file, and the file does not exist?
what if I try to extract from an empty container?
what if I pass a negative value (while the function expects a positive
one?)
etc.
Also, check a couple of “normal” cases

Of course, testing can never completely substitute debugging
Since you cannot be exhaustive, it may happen that your tests do
not spot a subtle bug
Don’t worry: when you discover it by debugging, add immediately a
unit test to checks that the error will never occur again in future
modifications

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 11 / 15



Other advantages

When writing tests, you concentrate on the interface
while writing tests, you wear the “client hat”
while writing code, you wear the “implementer hat”
writing tests is similar to writing a specification for the code

The test is useful as “documentation”
If you want to know how to use a function, you can sometimes look
at the test

You have a clear point at which you are done: when the all tests
work!

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 12 / 15



Outline

1 Why unit testing

2 Test Driven Development

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 13 / 15



Test Driven Development

The practice of writing tests first is called Test Driven Development
(TDD), and it is one of the main points of the Extreme
Programming (XP) methodology proposed by Kent Beck

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 14 / 15



Continuous Integration

Another related practice is Continuous Integration
This consists in automatic compilation, testing and commit in the
repository in one development cycle
committing on the server automatically compiles and test the code
therefore, an integration step is performed at every commit!

Of course, an appropriate tool support is needed to automate all
steps

Also, a certain rigorous and structured approach is needed to
impose the practice to all programmers

G. Lipari (Scuola Superiore Sant’Anna) Unit Testing May 5, 2011 15 / 15


	Why unit testing
	Test Driven Development

