Object Oriented Software Design

Inner classes, RTTI, Tree implementation

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

October 21, 2011

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011

http://retis.sssup.it/~lipari

Q Run-Time Type Identification
9 Anonymous inner classes

9 Binary Trees

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 2/44

Q Run-Time Type Identification

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 3/44

The shape example

@ Consider a hierarchy of Shape classes

Shape

area()

PaN

Triangle Rectangle Circle

diagonal()

@ The Shape class is abstract, it has an abstract method to compute
the area of the shape.

@ Now suppose we have an array of Shapes, and we would like to
compute the area for all of them.

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 4/44

@ This is the base class

oosd/shapes/Shape.java

package oosd. shapes;

public abstract class Shape {
protected String nane;

public Shape(String s) { name = s; }

public abstract double area();

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 5/44

./examples/10.java-examples/oosd/shapes/Shape.java

@ And one derived class:

oosd/shapes/Triangle.java

package oosd. shapes;

public class Triangle extends Shape {

private doubl e base = 0, height = 0;

public Triangle() { this("Triangle"); }

public Triangle(String s) { super(s); }

public Triangle(String s, double b, double h) {
this(s);
base = b;
hei ght = h;

}

public double area() {

Systemout. println("Conputing the area of Triangle " + nane);
return base * height / 2;

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 6/44

./examples/10.java-examples/oosd/shapes/Triangle.java

A list of Shapes

@ Let's use the QueuelListlt class we have seen last lecture

Queueli st It <Shape> nyg = new QueuelLi st |t <Shape>();

/'l upcast, never fails

nmyqg. push(new G rcle("red", 5.0));

myd. push(new Triangl e("yellow', 3.0, 4.0));
myqg. push(new Rectangl e("blue", 3.0, 4.0));

for (Shape s : nyq)
Systemout.println(s.area());

@ Everything as expected

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011

A new method

@ Rectangle derives from Shape, and adds a new method
di agonal () to compute the diagonal

oosd/shapes/Rectangle.java

public class Rectangl e extends Shape {

private doubl e base = 0, height = 0;

public Rectangle(String s) { super(s); }

public Rectangle() { this("Rectangle"); }

public Rectangle(String s, double b, double h) {
this(s);
hei ght = h;
base = b;

}

public double area() {
System out. println("Conputing the area of Rectangle " + nane);
return base * height;

}

publ i c doubl e di agonal () {
System out. println("Conputing the diagonal");
return Math. sqrt (basexbase+hei ght xhei ght);

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 8/44

./examples/10.java-examples/oosd/shapes/Rectangle.java

How to call diagonal?

@ We would like to call diagonal only for Rectangle s because it
does not make sense to call diagonal for Circle s and Triangle s

@ But, we have a problem:

for (Shape s : nyq) {
Systemout.println(s.area());
Systemout.println(s.diagonal ()); 1
}

-

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java

Compilation error:
di agonal () is not part of
the interface of Shape

October 21, 2011 9/44

Downcast

@ We could force s to become a reference to Rectangle , so that
di agonal () isin the interface now.

for (Shape s : nyq) {
Systemout.println(s.area());
System out. println(((Rectangle)s).diagonal());
}

@ This is called downcast , and must be explicit, because a Shape is
not (always) a rectangle

@ Downcast is not safe

@ Unfortunately, if s is pointing to a Triangle , Java run-time raises an
exception ClassCastException

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 10/ 44

Solution 1: catch the exception

@ By catching the exception, everything works fine ciientexcjava

inmport java.util.x;
i mport oosd. shapes. *;
i mport oosd. containers. *;

class dient Exc {
public static void main(String args[]) {
Queueli st |t <Shape> nyqg = new QueuelLi st |t <Shape>();
nyg. push(new Circle("red", 5.0));
nyg. push(new Tri angl e("yellow', 3.0, 4.0));
nyg. push(new Rectangl e("blue", 3.0, 4.0));

for (Shape s: nyq)
Systemout.println(s.area());
try {
double d = ((Rectangl e)s).diagonal ();
Systemout. println(d);
} catch(d assCast Exception e) {
Systemout. println("Not a rectangle");

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 11/44

./examples/10.java-examples/ClientExc.java

Upcasting and downcasting

@ When we insert in the QueuelListlt class, the perform an upcast
@ Upcast is always safe.
@ To understand if there is a Rectangle, we perform a downcast .
@ Downcast is not safe at all (raises an exception), and it should be
avoided when necessary.

@ to perform downcast Java has to identify the actual object type and
see if the cast can be performed.

October 21, 2011 12 /44

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java

instanceof

@ To avoid the exception (which is clumsy and inefficient), you can
use the keyword instanceof

ClientRTTl.java

i mport oosd. containers. *;

class AientRTTI {
public static void main(String args[]) {
Queueli st |t <Shape> nyq = new QueuelLi st |t <Shape>();
nyqg. push(new Circle("red", 5.0));
nyg. push(new Tri angl e("yellow', 3.0, 4.0));
nyg. push(new Rectangl e("blue", 3.0, 4.0));
Iterator<Shape> it = nyq.iterator();
while (it.hasNext()) {
Shape s = it.next();
Systemout.println(s.area());
if (s instanceof Rectangle)
Systemout. println(((Rectangle)s).diagonal ());

}

@ instanceof works well with inheritance

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011

./examples/10.java-examples/ClientRTTI.java

The Class object

@ All information on a specific class are contained in a special object
of type Class.

@ The class Class contains a certain number of methods to analyse
the interface:

@ forName(String s) returns a Class Object given the class name
@ islnstance(Object 0) returns true if the specified object is an
instance of the class

@ An example in the next slide

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 14/ 44

The usage of Class

ClientRTTI2.java

class AientRTTI2 {
public static void main(String args[]) {
Queueli st |t <Shape> nyg = new QueuelLi st |t <Shape>();

/'l upcast, never fails
nyg. push(new CGircle("red", 5.0));
nyg. push(new Tri angl e("yellow', 3.0, 4.0));
nmyg. push(new Rectangl e("blue", 3.0, 4.0));
Iterator<Shape> it = nyq.iterator();
while (it.hasNext()) {
Shape s = it.next();
Systemout.println("Cbject of class: " + s.getC ass().get Nang(
in package: " + s.getd ass().getPackage()
Systemout.println("Object is conpatible with Rectangle: " +
Rect angl e. cl ass. i sl nstance(s));
/! Rectangle.class is equivalent to
/1 O ass.forNane("Rectangle").islnstance(s)
Systemout.printlin(s.area());

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 15/ 44

./examples/10.java-examples/ClientRTTI2.java

@ In the previous example, there was another option: put
di agonal () inthe interface of the base class Shape

@ The di agonal () function in the Shape class needs to be a void
function, that could also raise an exception (for example
OperationNotimplemented)

@ This approach may generate fat interfaces

@ In this case, we chose to follow the other option

@ However, the downcast option is not always the best one, it
depends on the context

@ This has nothing to do with the specific Java Language: itis a
design problem, not a coding problem

@ We will come back to the problem of downcasting when studying
the Liskov’s substitution principle.

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 16/ 44

9 Anonymous inner classes

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 17/ 44

Inner classes

@ Let's have a closer look again at the QueuelListlt <E>:
. I exanpl es/ 10. j ava- exanpl es/ oosd/ cont ai ner s/ QueuelLi
@ The QLlterator class is a private inner class of QueueListlt

@ The reason for making it private is that QLIterator is an
implementation of the more general notion of Iterator

@ A different implementation is fine, as long as it conforms with the
interface

@ The user does not need to know the implementation, only the
interface (i.e. how to use it)

@ The user will never directly create a QLlIterator object: it asks the
container class to do the creation for him.

@ Advantages:

@ We can change the internal implementation without informing the
user, that can continue to use its code without modifications
@ We have achieved perfect modularity

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 18/ 44

./examples/10.java-examples/oosd/containers/QueueListIt.java

Anonymous inner classes

@ Sometimes, interfaces are so simple that creating a private inner
class with its own nhame seems too much;

@ Java provides a way do define classes on the fly

interface MyInterface {

int nyfun(); \
} ~ A simple interface I
class Myd ass {

Ivyl nterface get() {

return new Mylnterface() {
public int nyfun() { }_\
b
}

N An anonymous class |

}

@ Notice the special syntax: new followed by the name of the
interface, followed by the implementation
@ The class has no name, so you cannot define a constructor

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011

Anonymous iterator

oosd/containers/QueueListItAn.java

public Iterator<E> iterator() {
return new lterator<e>() {
private Node curr = head;
private Node prev = nul|;
publ i c bool ean hasNext () {
if (curr == null) return fal se;
el se return true;
}
public E next() {
if (curr == null) return null;
E elem= curr.elem
prev = curr;
curr = curr.next;
return elem
}
public void remove() {
if (prev == null) return;
Il renove el ement
Node p = prev. prev;
Node f = prev. next;
if (p==null) head = f;
else p.next = f;
if (f == null) tail = p;
else f.prev = p;
prev = null;
}
i
}

Introduction to Java October 21, 2011

./examples/10.java-examples/oosd/containers/QueueListItAn.java

Anonymous classes

@ Itis surely shorter:

@ However, in certain cases it can become cumbersome and

confusing, especially when there is too much code to write
@ If there is too much code to write (as in our example), | prefer to write
a regular inner class

@ | recommend to minimise the use of anonymous classes

@ However, it is important to understand what do they mean when
you meet them in somebody else code

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 21/44

e Binary Trees

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 22/ 44

@ We will need a binary tree to organise the data for the assignment

@ Before we look into trees, however, let's have a look at another
common container, which is widely used in many applications: the
Stack

@ The stack may be useful for storing partial results

@ For example, when we have to multiply the results of two
sub-expressions, we must first compute the sub-expressions;

@ The partial results may be stored into a stack, and retrieved when
needed

@ Example: (3+2) (6 —4)
@ Compute 3 + 2, and put the result 5 on the stack

@ Compute 6 — 4 and put the result on the stack
@ Extract the last two results from the stack, and multiply them

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 23/44

@ A stack is a very simple data structure.

@ A stack can hold a set of uniform data, like an array (for example,
integers)

@ Data is ordered according to the LIFO (Last-In-First-Out) strategy

Two main operations are defined on the
data structure:

@ Push: a new data in inserted in the B Stack p
top of the stack ﬁ: E
@ Pop: data is extracted from the top
stack

Usually, we can also read the element at the top of the stack with a
peek operation

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java

October 21, 2011 24144

@ In the following program, we use the standard Java
implementation of Stack

StackDemo.java

inmport java.util.x*;

class StackDeno {
public static void main(String args[]) {
St ack<l nt eger > nystack = new Stack<lnteger>();

for (int i=0; i<10; i++)
nmyst ack. push(new I nteger(i));

while (!nystack.enpty())

Systemout.print(" " + nystack.pop());
Systemout.println("");

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to Java

October 21, 2011

./examples/10.java-examples/StackDemo.java

Tree

@ A tree is a data structure defined as follows:

@ A tree may contain one or more nodes

@ A node in atree represents an element containing data.

@ A node may have zero or more child nodes. The children nodes
are called also descendants. Each node may have a parent node

@ A tree consists of one root node, plus zero or more children
sub-trees

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 26/44

@ Ais the root of the tree
@ Bis root of one sub tree of A

SN O)
! 7N

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 27144

@ In a binary tree, a node can have at most 2 children
o Left and right

@ A leaf node is a node without children

@ A root node is a node without parents
@ There is only one root node

@ Each node in the tree is itself a sub-tree
@ A leaf node is a sub-tree with one single node

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011

How to implement a tree

@ One basic data structure is the Node, as in the List data structure

@ In the List structure, a Node had two links, next and pr ev (see
. I exanpl es/ 10. j ava- exanpl es/ oosd/ cont ai ner s/ QueuelLi ¢

@ A possible implementation for a Tree Node is the following:

cl ass Node<E> {
E elem
Node | eft;
Node right;

}

@ Optionally, it could contain a link to the parent node

@ If one of the links is equal to nul | then the corresponding
sub-tree is null

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 29/44

./examples/10.java-examples/oosd/containers/QueueListIt.java

Interface for a Tree

@ We must be able to:

@ Create single-node trees
@ Link a sub-tree to single-node tree (to the left or to the right)
@ Get the left (right) sub-tree

@ Also, we would like to print the contents of the tree
@ To do this, we need to establish an order of printing

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011

Visiting a tree

@ There are two ways of listing the contents of a tree
@ Depth-first
@ Pre-order: first the root node is visited, then the left sub-tree, then
the right sub-tree
@ Post-order: first the left sub-tree is visited, then the right sub-tree,
then the root node
@ In-order: first the left sub-tree is visited, then the root node, then the
right sub-tree
@ Breadth first

@ First the root node is visited; then all the children; then all the
children of the children; and so on

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 31/44

A
/\ @ Breadthfirstt ABECDFG
5 = @ Pre-order: ABCDEFG
@ Post-order: CDBEFGEA
N N o In-order: CBDAFEG
C D F G

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 32/44

Implementation of a Binary Tree

@ Let’s start with the node

BTree.java

public class BTree<E> {
private class Node {

E el em

Node | ;

Node r;

voi d addLeft (Node n) {
I =n

}
voi d addRi ght (Node n) {
r =n;

}
Node(E elem) { this.elem= elem }
}

private Node root = null;

private BTree(Node n) {
root = n;
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 33/44

./examples/10.java-examples/BTree.java

Adding nodes

BTree.java

public BTree(E elem {
root = new Node(el em;
}

public BTree<E> addLeft (BTree<E> t) {
root . addLeft(t.root);
return this;

}

publ i c BTree<E> addRi ght (BTree<E> t) {
root . addRi ght (t.root);
return this;

}

public BTree<E> |inkToLeft(BTree<E> t) {
t.root.addLeft(root);
return this;

}

public BTree<E> |inkToRi ght (BTree<E> t) {
t.root.addRi ght(root);
return this;

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 34/44

./examples/10.java-examples/BTree.java

BTree continued

BTree.java
publ i c BTree<E> getLeftSubtree() {
if (root == null) return null;
el se return new BTree<E>(root.l);
}
publ i c BTree<E> get Ri ght Subtree() {
if (root == null) return null;
el se return new BTree<E>(root.r);
}
voi d printPostOder() {
if (root == null) return;
el se {
get Left Subtree(). print Post Order();
get Ri ght Subtree(). printPostOrder();
Systemout.print(root.elen;
Systemout.print(" ");
}
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 35/44

./examples/10.java-examples/BTree.java

BTree continued

BTree.java

void printPreOrder() {
if (root == null) return;
el se {
System out.print(root.elem;
Systemout.print(" ");
get Left Subtree().printPreOder();
get Ri ght Subtree().printPreCrder();

}

void printlnOder() {
if (root == null) return;
el se {
get Left Subtree().printlnOrder();
Systemout.print(root.elen;
Systemout.print(" ");
get Right Subtree().printlnOder();

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011

./examples/10.java-examples/BTree.java

BTree.java

public static void main(String args[]) {
BTree<String> nytree = new BTree<String>("*");

BTree<String> |l = new BTree<String>("+");
BTree<String> rr = new BTree<String>("-");

I'l.addLeft(new BTree<String>("2")).
addRi ght (new BTree<String>("3")).
l'i nkToLeft (nytree);

rr.addLeft (new BTree<String>("6")).
addRi ght (new BTree<String>("4")).
Ii nkToRi ght (nytree);

Systemout. println("Post Oder: ");
nytree. printPostOrder();
Systemout.println("\nPre Order: ");
nytree.printPreOrder();
Systemout.println("\nln Oder: ");
nytree.printlnOrder();
Systemout.println("\n");

pari (Scuola Superiore San

./examples/10.java-examples/BTree.java

A tree Iterator

@ In reality, we would like to make the visiting operation more
abstract
@ In fact, while visiting we may want to perform other operations than
printing
@ For example, evaluating an expression (1)
@ Therefore, we need to generalise the algorithm for visiting the tree,
and make it independent of the specific operation
@ To do so, we have to modify the structure of the algorithm
@ In the previous program, we have used a simple recursive algorithm
@ Now we need to implement an iterative algorithm, through an
iterator
@ The implementation is slightly complex, so pay attention!

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 38/44

BTreelt.java

public class BTreelt<E> {
private class Node {
E el em
Node | ;
Node r;
Node p;

voi d addLeft (Node n) {
I =n;
n.p =this;

}

voi d addRi ght (Node n) {
r =n
n.p =this;

}
Node(E elem) { this.elem= elem }

@ We now use also the parent link p, because we will need to go up
in the hierarchy

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 39/44

./examples/10.java-examples/BTreeIt.java

BTreelt.java

private class PostOrderlterator inplenents Iterator<E> {
Node next;
Node | ast;

Post Orderlterator() {
next = root;
last = null;
noveTolef t Most Leaf () ;

}
private void noveToLeft Most Leaf () {
do {
/'l go down |eft
while (next.l !'= null) next = next.l;
/1 maybe there is a node with no left but sone right...
/1 then go down rigth
if (next.r !'= null) next = next.r;
} while (next.l !'=null || next.r !'= null);
/1 exit when both left and right are null
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 40/ 44

./examples/10.java-examples/BTreeIt.java

The next method

BTreelt.java

public E next() throws NoSuchEl ement Exception {
if (next == null) throw new NoSuchEl ement Exception();
E key = next.elem
/1 1 already visited left and right,
/Il so | have to go up (and maybe right)

last = next;
next = next.p;
if (next !'= null && last == next.l) {

next = next.r;
noveTolLef t Most Leaf () ;

}
return key;
}
}
/2 %/
/* | NTERFACE */
/2 %/

public BTreelt(E elenm {
root = new Node(elen;
}

public BTreelt<E> addLeft(BTreelt<E> t) {
root. addLeft (t.root);

Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011

./examples/10.java-examples/BTreeIt.java

The tree class

@ Just the same, except for the method to return the iterator:

Iterator<E> postOrderlterator() {
return new PostOrderlterator();

@ Notice that we do not need the pri nt XXX() functions, because
we can use the iterator

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 42/ 44

BTreelt usage

BTreelt.java

addRi ght (new BTreel t<String>("*").
addLeft (new BTreel t<String>("2")).
addRi ght (new BTreel t<String>("2"))

).
I'i nkToRi ght (nytree);

System out. println("Post Oder: ");

Iterator<String> it = nytree.postOrderlterator();
while (it.hasNext()) Systemout.print(it.next() + " ");
Systemout.println("");

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011

./examples/10.java-examples/BTreeIt.java

Exercises

@ Write the pre-order and the in-order iterators for class BTreelt

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 21, 2011 44| 44

	Run-Time Type Identification
	Anonymous inner classes
	Binary Trees

