
Object Oriented Software Design
Inner classes, RTTI, Tree implementation

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

October 21, 2011

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 1 / 44

http://retis.sssup.it/~lipari

Outline

1 Run-Time Type Identification

2 Anonymous inner classes

3 Binary Trees

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 2 / 44

Outline

1 Run-Time Type Identification

2 Anonymous inner classes

3 Binary Trees

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 3 / 44

The shape example

Consider a hierarchy of Shape classes

Shape

area()

CircleRectangle

diagonal()

Triangle

The Shape class is abstract, it has an abstract method to compute
the area of the shape.
Now suppose we have an array of Shapes, and we would like to
compute the area for all of them.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 4 / 44

Shapes

This is the base class
oosd/shapes/Shape.java

package oosd.shapes;

public abstract class Shape {
protected String name;

public Shape(String s) { name = s; }

public abstract double area();
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 5 / 44

./examples/10.java-examples/oosd/shapes/Shape.java

Triangle

And one derived class:

oosd/shapes/Triangle.java

package oosd.shapes;

public class Triangle extends Shape {
private double base = 0, height = 0;
public Triangle() { this("Triangle"); }
public Triangle(String s) { super(s); }
public Triangle(String s, double b, double h) {

this(s);
base = b;
height = h;

}

public double area() {
System.out.println("Computing the area of Triangle " + name);
return base * height / 2;

}
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 6 / 44

./examples/10.java-examples/oosd/shapes/Triangle.java

A list of Shapes

Let’s use the QueueListIt class we have seen last lecture

QueueListIt<Shape> myq = new QueueListIt<Shape>();

// upcast, never fails
myq.push(new Circle("red", 5.0));
myq.push(new Triangle("yellow", 3.0, 4.0));
myq.push(new Rectangle("blue", 3.0, 4.0));

for (Shape s : myq)
System.out.println(s.area());

Everything as expected

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 7 / 44

A new method

Rectangle derives from Shape , and adds a new method
diagonal() to compute the diagonal

oosd/shapes/Rectangle.java

public class Rectangle extends Shape {
private double base = 0, height = 0;
public Rectangle(String s) { super(s); }
public Rectangle() { this("Rectangle"); }
public Rectangle(String s, double b, double h) {

this(s);
height = h;
base = b;

}

public double area() {
System.out.println("Computing the area of Rectangle " + name);
return base * height;

}

public double diagonal() {
System.out.println("Computing the diagonal");
return Math.sqrt(base*base+height*height);

}
}G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 8 / 44

./examples/10.java-examples/oosd/shapes/Rectangle.java

How to call diagonal?

We would like to call diagonal only for Rectangle s because it
does not make sense to call diagonal for Circle s and Triangle s

But, we have a problem:

for (Shape s : myq) {
System.out.println(s.area());
System.out.println(s.diagonal());

}

Compilation error:
diagonal() is not part of
the interface of Shape

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 9 / 44

Downcast

We could force s to become a reference to Rectangle , so that
diagonal() is in the interface now.

for (Shape s : myq) {
System.out.println(s.area());
System.out.println(((Rectangle)s).diagonal());

}

This is called downcast , and must be explicit, because a Shape is
not (always) a rectangle
Downcast is not safe

Unfortunately, if s is pointing to a Triangle , Java run-time raises an
exception ClassCastException

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 10 / 44

Solution 1: catch the exception

By catching the exception, everything works fine ClientExc.java

import java.util.*;
import oosd.shapes.*;
import oosd.containers.*;

class ClientExc {
public static void main(String args[]) {

QueueListIt<Shape> myq = new QueueListIt<Shape>();
myq.push(new Circle("red", 5.0));
myq.push(new Triangle("yellow", 3.0, 4.0));
myq.push(new Rectangle("blue", 3.0, 4.0));

for (Shape s: myq) {
System.out.println(s.area());
try {

double d = ((Rectangle)s).diagonal();
System.out.println(d);

} catch(ClassCastException e) {
System.out.println("Not a rectangle");

}
}

}
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 11 / 44

./examples/10.java-examples/ClientExc.java

Upcasting and downcasting

When we insert in the QueueListIt class, the perform an upcast
Upcast is always safe.

To understand if there is a Rectangle, we perform a downcast .

Downcast is not safe at all (raises an exception), and it should be
avoided when necessary.
to perform downcast Java has to identify the actual object type and
see if the cast can be performed.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 12 / 44

instanceof

To avoid the exception (which is clumsy and inefficient), you can
use the keyword instanceof
ClientRTTI.java

import oosd.containers.*;

class ClientRTTI {
public static void main(String args[]) {

QueueListIt<Shape> myq = new QueueListIt<Shape>();
myq.push(new Circle("red", 5.0));
myq.push(new Triangle("yellow", 3.0, 4.0));
myq.push(new Rectangle("blue", 3.0, 4.0));
Iterator<Shape> it = myq.iterator();
while (it.hasNext()) {

Shape s = it.next();
System.out.println(s.area());
if (s instanceof Rectangle)

System.out.println(((Rectangle)s).diagonal());
}

}
}

instanceof works well with inheritance
G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 13 / 44

./examples/10.java-examples/ClientRTTI.java

The Class object

All information on a specific class are contained in a special object
of type Class .
The class Class contains a certain number of methods to analyse
the interface:

forName(String s) returns a Class Object given the class name
isInstance(Object o) returns true if the specified object is an
instance of the class

An example in the next slide

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 14 / 44

The usage of Class

ClientRTTI2.java

class ClientRTTI2 {
public static void main(String args[]) {

QueueListIt<Shape> myq = new QueueListIt<Shape>();

// upcast, never fails
myq.push(new Circle("red", 5.0));
myq.push(new Triangle("yellow", 3.0, 4.0));
myq.push(new Rectangle("blue", 3.0, 4.0));
Iterator<Shape> it = myq.iterator();
while (it.hasNext()) {

Shape s = it.next();
System.out.println("Object of class: " + s.getClass().getName()

" in package: " + s.getClass().getPackage());
System.out.println("Object is compatible with Rectangle: " +

Rectangle.class.isInstance(s));
// Rectangle.class is equivalent to
// Class.forName("Rectangle").isInstance(s)
System.out.println(s.area());

}
}

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 15 / 44

./examples/10.java-examples/ClientRTTI2.java

Downcasting?

In the previous example, there was another option: put
diagonal() in the interface of the base class Shape

The diagonal() function in the Shape class needs to be a void
function, that could also raise an exception (for example
OperationNotImplemented)
This approach may generate fat interfaces

In this case, we chose to follow the other option

However, the downcast option is not always the best one, it
depends on the context

This has nothing to do with the specific Java Language: it is a
design problem, not a coding problem

We will come back to the problem of downcasting when studying
the Liskov’s substitution principle.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 16 / 44

Outline

1 Run-Time Type Identification

2 Anonymous inner classes

3 Binary Trees

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 17 / 44

Inner classes

Let’s have a closer look again at the QueueListIt <E>:
./examples/10.java-examples/oosd/containers/QueueListIt.java

The QLIterator class is a private inner class of QueueListIt
The reason for making it private is that QLIterator is an
implementation of the more general notion of Iterator
A different implementation is fine, as long as it conforms with the
interface
The user does not need to know the implementation, only the
interface (i.e. how to use it)
The user will never directly create a QLIterator object: it asks the
container class to do the creation for him.

Advantages:
We can change the internal implementation without informing the
user, that can continue to use its code without modifications
We have achieved perfect modularity

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 18 / 44

./examples/10.java-examples/oosd/containers/QueueListIt.java

Anonymous inner classes

Sometimes, interfaces are so simple that creating a private inner
class with its own name seems too much;

Java provides a way do define classes on the fly

interface MyInterface {
int myfun();

}
class MyClass {
...
MyInterface get() {

return new MyInterface() {
public int myfun() { ...}

};
}

}

A simple interface

An anonymous class

Notice the special syntax: new followed by the name of the
interface, followed by the implementation

The class has no name, so you cannot define a constructor

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 19 / 44

Anonymous iterator

oosd/containers/QueueListItAn.java

public Iterator<E> iterator() {
return new Iterator<E>() {

private Node curr = head;
private Node prev = null;
public boolean hasNext() {

if (curr == null) return false;
else return true;

}
public E next() {

if (curr == null) return null;
E elem = curr.elem;
prev = curr;
curr = curr.next;
return elem;

}
public void remove() {

if (prev == null) return;
// remove element
Node p = prev.prev;
Node f = prev.next;
if (p == null) head = f;
else p.next = f;
if (f == null) tail = p;
else f.prev = p;
prev = null;

}
};

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 20 / 44

./examples/10.java-examples/oosd/containers/QueueListItAn.java

Anonymous classes

It is surely shorter:
However, in certain cases it can become cumbersome and
confusing, especially when there is too much code to write

If there is too much code to write (as in our example), I prefer to write
a regular inner class

I recommend to minimise the use of anonymous classes
However, it is important to understand what do they mean when
you meet them in somebody else code

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 21 / 44

Outline

1 Run-Time Type Identification

2 Anonymous inner classes

3 Binary Trees

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 22 / 44

Binary trees

We will need a binary tree to organise the data for the assignment

Before we look into trees, however, let’s have a look at another
common container, which is widely used in many applications: the
Stack
The stack may be useful for storing partial results

For example, when we have to multiply the results of two
sub-expressions, we must first compute the sub-expressions;
The partial results may be stored into a stack, and retrieved when
needed

Example: (3 + 2) ∗ (6 − 4)
Compute 3 + 2, and put the result 5 on the stack
Compute 6 − 4 and put the result on the stack
Extract the last two results from the stack, and multiply them

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 23 / 44

Stack

A stack is a very simple data structure.

A stack can hold a set of uniform data, like an array (for example,
integers)

Data is ordered according to the LIFO (Last-In-First-Out) strategy

Two main operations are defined on the
data structure:

Push: a new data in inserted in the
top of the stack

Pop: data is extracted from the top
stack

Usually, we can also read the element at the top of the stack with a
peek operation

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 24 / 44

Stack usage

In the following program, we use the standard Java
implementation of Stack

StackDemo.java

import java.util.*;

class StackDemo {
public static void main(String args[]) {

Stack<Integer> mystack = new Stack<Integer>();

for (int i=0; i<10; i++)
mystack.push(new Integer(i));

while (!mystack.empty())
System.out.print(" " + mystack.pop());

System.out.println("");
}

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 25 / 44

./examples/10.java-examples/StackDemo.java

Tree

A tree is a data structure defined as follows:
A tree may contain one or more nodes
A node in a tree represents an element containing data.
A node may have zero or more child nodes. The children nodes
are called also descendants. Each node may have a parent node
A tree consists of one root node, plus zero or more children
sub-trees

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 26 / 44

Example

A is the root of the tree
B is root of one sub tree of A

A

B

C

D

H

E

F G

I

L

M N

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 27 / 44

Binary trees

In a binary tree, a node can have at most 2 children
Left and right

A leaf node is a node without children
A root node is a node without parents

There is only one root node

Each node in the tree is itself a sub-tree
A leaf node is a sub-tree with one single node

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 28 / 44

How to implement a tree

One basic data structure is the Node, as in the List data structure
In the List structure, a Node had two links, next and prev (see
./examples/10.java-examples/oosd/containers/QueueListIt.java

A possible implementation for a Tree Node is the following:

class Node<E> {
E elem;
Node left;
Node right;

}

Optionally, it could contain a link to the parent node

If one of the links is equal to null then the corresponding
sub-tree is null

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 29 / 44

./examples/10.java-examples/oosd/containers/QueueListIt.java

Interface for a Tree

We must be able to:
Create single-node trees
Link a sub-tree to single-node tree (to the left or to the right)
Get the left (right) sub-tree

Also, we would like to print the contents of the tree
To do this, we need to establish an order of printing

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 30 / 44

Visiting a tree

There are two ways of listing the contents of a tree
Depth-first

Pre-order: first the root node is visited, then the left sub-tree, then
the right sub-tree
Post-order: first the left sub-tree is visited, then the right sub-tree,
then the root node
In-order: first the left sub-tree is visited, then the root node, then the
right sub-tree

Breadth first
First the root node is visited; then all the children; then all the
children of the children; and so on

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 31 / 44

Example

A

B

C D

E

F G

Breadth first: A B E C D F G

Pre-order: A B C D E F G

Post-order: C D B E F G E A

In-order: C B D A F E G

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 32 / 44

Implementation of a Binary Tree

Let’s start with the node

BTree.java

public class BTree<E> {
private class Node {

E elem;
Node l;
Node r;

void addLeft(Node n) {
l = n;

}
void addRight(Node n) {

r = n;
}
Node(E elem) { this.elem = elem; }

}

private Node root = null;

private BTree(Node n) {
root = n;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 33 / 44

./examples/10.java-examples/BTree.java

Adding nodes

BTree.java

public BTree(E elem) {
root = new Node(elem);

}

public BTree<E> addLeft(BTree<E> t) {
root.addLeft(t.root);
return this;

}

public BTree<E> addRight(BTree<E> t) {
root.addRight(t.root);
return this;

}

public BTree<E> linkToLeft(BTree<E> t) {
t.root.addLeft(root);
return this;

}

public BTree<E> linkToRight(BTree<E> t) {
t.root.addRight(root);
return this;

}
G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 34 / 44

./examples/10.java-examples/BTree.java

BTree continued

BTree.java

public BTree<E> getLeftSubtree() {
if (root == null) return null;
else return new BTree<E>(root.l);

}

public BTree<E> getRightSubtree() {
if (root == null) return null;
else return new BTree<E>(root.r);

}

void printPostOrder() {
if (root == null) return;
else {

getLeftSubtree().printPostOrder();
getRightSubtree().printPostOrder();
System.out.print(root.elem);
System.out.print(" ");

}
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 35 / 44

./examples/10.java-examples/BTree.java

BTree continued

BTree.java

void printPreOrder() {
if (root == null) return;
else {

System.out.print(root.elem);
System.out.print(" ");
getLeftSubtree().printPreOrder();
getRightSubtree().printPreOrder();

}
}

void printInOrder() {
if (root == null) return;
else {

getLeftSubtree().printInOrder();
System.out.print(root.elem);
System.out.print(" ");
getRightSubtree().printInOrder();

}
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 36 / 44

./examples/10.java-examples/BTree.java

BTree usage

BTree.java

public static void main(String args[]) {
BTree<String> mytree = new BTree<String>("*");

BTree<String> ll = new BTree<String>("+");

BTree<String> rr = new BTree<String>("-");

ll.addLeft(new BTree<String>("2")).
addRight(new BTree<String>("3")).
linkToLeft(mytree);

rr.addLeft(new BTree<String>("6")).
addRight(new BTree<String>("4")).
linkToRight(mytree);

System.out.println("Post Order: ");
mytree.printPostOrder();
System.out.println("\nPre Order: ");
mytree.printPreOrder();
System.out.println("\nIn Order: ");
mytree.printInOrder();
System.out.println("\n");

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 37 / 44

./examples/10.java-examples/BTree.java

A tree Iterator

In reality, we would like to make the visiting operation more
abstract

In fact, while visiting we may want to perform other operations than
printing
For example, evaluating an expression (!)

Therefore, we need to generalise the algorithm for visiting the tree,
and make it independent of the specific operation

To do so, we have to modify the structure of the algorithm
In the previous program, we have used a simple recursive algorithm
Now we need to implement an iterative algorithm, through an
iterator
The implementation is slightly complex, so pay attention!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 38 / 44

The node

BTreeIt.java

public class BTreeIt<E> {
private class Node {

E elem;
Node l;
Node r;
Node p;

void addLeft(Node n) {
l = n;
n.p = this;

}
void addRight(Node n) {

r = n;
n.p = this;

}
Node(E elem) { this.elem = elem; }

}

We now use also the parent link p, because we will need to go up
in the hierarchy

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 39 / 44

./examples/10.java-examples/BTreeIt.java

Iterator

BTreeIt.java

private class PostOrderIterator implements Iterator<E> {
Node next;
Node last;

PostOrderIterator() {
next = root;
last = null;
moveToLeftMostLeaf();

}

private void moveToLeftMostLeaf() {
do {

// go down left
while (next.l != null) next = next.l;
// maybe there is a node with no left but some right...
// then go down rigth
if (next.r != null) next = next.r;

} while (next.l != null || next.r != null);
// exit when both left and right are null

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 40 / 44

./examples/10.java-examples/BTreeIt.java

The next method

BTreeIt.java

public E next() throws NoSuchElementException {
if (next == null) throw new NoSuchElementException();
E key = next.elem;
// I already visited left and right,
// so I have to go up (and maybe right)
last = next;
next = next.p;
if (next != null && last == next.l) {

next = next.r;
moveToLeftMostLeaf();

}

return key;
}

}

/* ---------------------------------*/
/* INTERFACE */
/* ---------------------------------*/

public BTreeIt(E elem) {
root = new Node(elem);

}

public BTreeIt<E> addLeft(BTreeIt<E> t) {
root.addLeft(t.root);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 41 / 44

./examples/10.java-examples/BTreeIt.java

The tree class

Just the same, except for the method to return the iterator:

Iterator<E> postOrderIterator() {
return new PostOrderIterator();

}

Notice that we do not need the printXXX() functions, because
we can use the iterator

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 42 / 44

BTreeIt usage

BTreeIt.java

addRight(new BTreeIt<String>("*").
addLeft(new BTreeIt<String>("2")).
addRight(new BTreeIt<String>("2"))
).

linkToRight(mytree);

System.out.println("Post Order: ");
Iterator<String> it = mytree.postOrderIterator();
while (it.hasNext()) System.out.print(it.next() + " ");
System.out.println("");

}
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 43 / 44

./examples/10.java-examples/BTreeIt.java

Exercises

Write the pre-order and the in-order iterators for class BTreeIt

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 21, 2011 44 / 44

	Run-Time Type Identification
	Anonymous inner classes
	Binary Trees

