
Object Oriented Software Design
From design to realization

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

November 11, 2011

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 1 / 60

http://retis.sssup.it/~lipari


Outline

1 Design Patterns

2 Singleton

3 Abstract Factory

4 Factory Method

5 Static factory method

6 Factory with Registry

7 Bibliography

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 2 / 60



Outline

1 Design Patterns

2 Singleton

3 Abstract Factory

4 Factory Method

5 Static factory method

6 Factory with Registry

7 Bibliography

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 3 / 60



Motivation

Good Object Oriented programming is not easy
Emphasis on design

Errors may be expensive
Especially design errors!

Need a lot of experience to improve the ability in OO design and
programming

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 4 / 60



Motivation

Good Object Oriented programming is not easy
Emphasis on design

Errors may be expensive
Especially design errors!

Need a lot of experience to improve the ability in OO design and
programming

Reuse experts’ design

Patterns = documented experience

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 4 / 60



The source

The design patterns idea was first proposed to the software
community by the “Gang of four” [2]

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
Design patterns: elements of reusable object-oriented software

They were inspired by a book on architecture design by
Christopher Alexander [1]

Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice.

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 5 / 60



Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 6 / 60



Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design

One of the few examples in which software development has been
inspired by other areas of engineering

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 6 / 60



Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design

One of the few examples in which software development has been
inspired by other areas of engineering

The expected benefits of applying well-know design structures

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 6 / 60



Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design

One of the few examples in which software development has been
inspired by other areas of engineering

The expected benefits of applying well-know design structures
Finding the right code structure (which classes, their relationship)

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 6 / 60



Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design

One of the few examples in which software development has been
inspired by other areas of engineering

The expected benefits of applying well-know design structures
Finding the right code structure (which classes, their relationship)
Coded infrastructures

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 6 / 60



Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design

One of the few examples in which software development has been
inspired by other areas of engineering

The expected benefits of applying well-know design structures
Finding the right code structure (which classes, their relationship)
Coded infrastructures
A Common design jargon (factory, delegation, composite, etc.)

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 6 / 60



Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design

One of the few examples in which software development has been
inspired by other areas of engineering

The expected benefits of applying well-know design structures
Finding the right code structure (which classes, their relationship)
Coded infrastructures
A Common design jargon (factory, delegation, composite, etc.)
Consistent format

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 6 / 60



Patterns and principles

Patterns can be seen as extensive applications of the OO
principles mentioned above

For every patter we will try to highlight the benefits in terms of
hiding, reuse, decoupling, substitution, etc.

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 7 / 60



Pattern Categories

Creational: Replace explicit creation problems, prevent platform
dependencies

Structural: Handle unchangeable classes, lower coupling and
offer alternatives to inheritance

Behavioral: Hide implementation, hides algorithms, allows easy
and dynamic configuration of objects

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 8 / 60



Outline

1 Design Patterns

2 Singleton

3 Abstract Factory

4 Factory Method

5 Static factory method

6 Factory with Registry

7 Bibliography

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 9 / 60



Intent

Ensure that a class only has one instance, and provide a
global point of access to it

For some classes it is important to have exactly one instance
The should be only one window manager in the system

Of course, the same can be achieved with a global variable
However, for complex system we could run in some problems

the initialization order
the object is created many times by mistake, etc.

A better solution is to make the class itself responsible for creating
and maintaining the instance

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 10 / 60



Code

class SysParams {
static private SysParams inst = new SysParams();
private SysParams() {

...
}
// other private non static members
int nHandles = 0;
String confFile = "";
static public SysParams getInstance() {

return inst;
}
// other non static members
public int getHandles() {

return nHandles;
}
public String getConfFileName() {

return confFile;
}
public void setConfFileName(String name) {

confFile = name;
}

}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 11 / 60



Comment

The constructor is private:
It is not possible to create new instances of this class

There is only one instance
The instance is referred by a static member, which is a reference to
an object of the same class
The instance is initialised when the class is used for the first time
The only way to access the class instance is to invoke the static
method getInstance()

All other members are non static
Data is private
Functions are public

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 12 / 60



Usage

...
int n = SysParams.getInstance().getHandles();

SysParams.getInstance().setConfFileName("file.cfg");
...

SysParams p = new SysParams();

To access any method of the instance, we must use the
SysParams.getInstance() followed by the method to be
called

It is not possible to create new instances

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 13 / 60



Alternative

An alternative is to use only static members:

class SysParams {
private SysParams() { }
static int nHandles = 0;
static String confFile = "";
// other non static members
public static int getHandles() {

return nHandles;
}
public static String getConfFileName() {

return confFile;
}
public static void setConfFileName(String name) {

confFile = name;
}

}

Usage:

int n = SysParams.getHandles();
SysParams.setConfFileName("file.cfg");

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 14 / 60



Alternative?

The alternative seems simpler
Less typing is required!

However it is less flexible! The Singleton has many advantages
1 Easier to extend (subclassing is not possible)
2 Better implementation hiding
3 Can be easily and more flexibly configured for concurrent programs
4 Can be extended to provide either two or a limited set of instances

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 15 / 60



Subclassing and registry

Sometimes it may be useful to have different subclasses of the
class, but only one instance of one of them

For example, we could chose one of several windows managers
We can do that at compile/link time by using conditional
compilation;

In this case, every subclass has its implementation of the
getInstance() that returns the correct pointer, and the one to
compile/link is decided though compilation switches

We can also do it at run-time (during instantiation), using for
example an environment variable

In this case, it is necessary to implement the creation code in the
getInstance() method of the base class

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 16 / 60



Creation in getInstance

class SysParams {
static private SysParams inst = 0
private SysParams() {

...
}
// other private non static members
...
static public SysParams getInstance() {

if (inst == 0)
inst = new SysParams(); // or something else

return inst;
}
// other non static members
...

}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 17 / 60



Inheritance

class WinManager {
static private inst = 0;
...
static public getInstance() {

if (inst == 0) {
String wm = SysParams.getWinMan();
if (wm == "Motif")

inst = new MotifWinManager();
else if (wm == "GTK")

inst = new GTKWinManager();
else inst = new DefWinManager();

}
return inst;

}
}

class GTKWinManager extends WinManager { ... }
class MotifWinManager extends WinManager { ... }
class DefWinManager extends DefWinManager { ... }

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 18 / 60



When to use singletons

A Singleton is useful to implement global variables in a safe way
For example, it provides a global point of access and an interface to
a set of global objects (e.g. system parameters, a window manager,
a configuration manager, etc.)

It may be useful to control the order of initialisation

The object is not created if not used
Sometimes this pattern is overused

Singletons everywhere!
It is not worth to make it for a few primitive global variables that are
local to a module

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 19 / 60



Outline

1 Design Patterns

2 Singleton

3 Abstract Factory

4 Factory Method

5 Static factory method

6 Factory with Registry

7 Bibliography

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 20 / 60



Abstract factory

A program must be able to choose one of several families of
classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton, MotifScrollBar,
MotifWindow, pmButton, pmScrollBar, pmWindow

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 21 / 60



Abstract factory

A program must be able to choose one of several families of
classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton, MotifScrollBar,
MotifWindow, pmButton, pmScrollBar, pmWindow

Inheritance:
Clearly, we can make all “button” classes derive from an abstract
button that implements a virtual “draw” function
Then, we hold a pointer to button, and assign a specific button object,
so that the correct draw() function is invoked each time

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 21 / 60



Abstract factory

A program must be able to choose one of several families of
classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton, MotifScrollBar,
MotifWindow, pmButton, pmScrollBar, pmWindow

Inheritance:
Clearly, we can make all “button” classes derive from an abstract
button that implements a virtual “draw” function
Then, we hold a pointer to button, and assign a specific button object,
so that the correct draw() function is invoked each time

We probably need to dynamically create a lot of this objects

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 21 / 60



Abstract factory

A program must be able to choose one of several families of
classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton, MotifScrollBar,
MotifWindow, pmButton, pmScrollBar, pmWindow

Inheritance:
Clearly, we can make all “button” classes derive from an abstract
button that implements a virtual “draw” function
Then, we hold a pointer to button, and assign a specific button object,
so that the correct draw() function is invoked each time

We probably need to dynamically create a lot of this objects
Problem: how can we simplify the creation of these objects?

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 21 / 60



Naive approach

We keep a global variable (or object) that represents the current
window manager and “look-and-feel” for all the objects

Every time we create an object, we execute a switch/case on the
global variable to see which object we must create

lf = getWinManagerTypeString();
// need to create a button
switch(lf) {
case "WIN": button = new WinButton(...);

break:
case "MOTIF": button = new MotifButton(...);

break;
case "PM": button = new PmButton(...);

...
}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 22 / 60



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must add a new
case)

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 23 / 60



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must add a new
case)

How much code must we use?
Assuming that each look and feel is part of a different library, all
libraries must be linked together
Large amount of code

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 23 / 60



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must add a new
case)

How much code must we use?
Assuming that each look and feel is part of a different library, all
libraries must be linked together
Large amount of code

This solution is not compliant with the open/closed principle
Every time we add a new look and feel, we must change the code
of existing functions/classes

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 23 / 60



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must add a new
case)

How much code must we use?
Assuming that each look and feel is part of a different library, all
libraries must be linked together
Large amount of code

This solution is not compliant with the open/closed principle
Every time we add a new look and feel, we must change the code
of existing functions/classes

This solution does not scale

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 23 / 60



Requirements

Uniform treatment of every button, window, etc.
Once you define the interface, you can easily use inheritance

Uniform object creation

Easy to switch between families

Easy to add a family

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 24 / 60



Solution: Abstract factory

Define a factory (i.e. a class whose sole responsibility is to create
objects)

interface WidgetFactory {
Button makeButton(args);
Window makeWindow(args);
// other widgets...

}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 25 / 60



Solution: Abstract factory

Define a factory (i.e. a class whose sole responsibility is to create
objects)

interface WidgetFactory {
Button makeButton(args);
Window makeWindow(args);
// other widgets...

}

Define a concrete factory for each of the families

class WinWidgetFactory implements WidgetFactory {
Button makeButton(args) {

return new WinButton(args);
}
Window makeWindow(args) {

return new WinWindow(args);
}

}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 25 / 60



Solution - cont.

Select once which family to use:

WidgetFactory wf;
lf = getWinManagerTypeString();
switch (lf) {
case "WIN": wf = new WinWidgetFactory();

break;
case "MOTIF": wf = new MotifWidgetFactory();

break;
...
}

When creating objects in the code, don’t use “new” but call:

Button b = wf.makeButton(args);

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 26 / 60



Solution - cont.

Select once which family to use:

WidgetFactory wf;
lf = getWinManagerTypeString();
switch (lf) {
case "WIN": wf = new WinWidgetFactory();

break;
case "MOTIF": wf = new MotifWidgetFactory();

break;
...
}

When creating objects in the code, don’t use “new” but call:

Button b = wf.makeButton(args);

Switch families – once in the code
Add a family – one new factory, no effect on existing code

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 26 / 60



UML diagram

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 27 / 60



UML diagram, applied

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 28 / 60



Participants

AbstractFactory (WidgetFactory)
declares an interface for operations that create abstract product
objects.

ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)
implements the operations to create concrete product objects.

AbstractProduct (Window, ScrollBar)
declares an interface for a type of product object.

ConcreteProduct (MotifWindow, MotifScrollBar)
defines a product object to be created by the corresponding
concrete factory.
implements the AbstractProduct interface.

Client
uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 29 / 60



Comments

Pros:
It makes exchanging product families easy. It is easy to change the
concrete factory that an application uses. It can use different
product configurations simply by changing the concrete factory.
It promotes consistency among products. When product objects in
a family are designed to work together, it’s important that an
application uses objects from only one family at a time time.
AbstractFactory makes this easy to enforce.

Cons:
Not easy to extend the abstract factory’s interface

Other patterns:
Usually one factory per application, a perfect example of a singleton

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 30 / 60



Known uses

Different operating systems (could be Button, could be File)

Different look-and-feel standards

Different communication protocols

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 31 / 60



Outline

1 Design Patterns

2 Singleton

3 Abstract Factory

4 Factory Method

5 Static factory method

6 Factory with Registry

7 Bibliography

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 32 / 60



Intent

Define an interface for creating an object, but let subclasses
decide which class to instantiate

Also known as Virtual Constructor

The idea is to provide a virtual function to create objects of a class
hierarchy

each function will then know which class to instantiate

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 33 / 60



Example

Consider a framework for an office suite
Typical classes will be Document and Application
there will be different types of documents, and different types of
applications
for example: Excel and PowerPoint are applications, excel sheet
and presentation are documents
all applications derive from the same abstract class Application
all documents derive from the same abstract class Document
we have parallel hierarchies of classes
every application must be able to create its own document object

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 34 / 60



Example in UML

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 35 / 60



Participants

Product (Document)
defines the interface of the objects the factory method creates

ConcreteProduct (MyDocument)
implements the Product’s interface

Creator (Application)
declares the factory method

ConcreteCreator (MyApplication)
overrides the factory method to return an instance of a
ConcreteProduct

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 36 / 60



UML representation

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 37 / 60



Implementation

It may be useful to select the factory method by using a
parameter, to allow the creation of multiple types of products

For example, suppose that you want to save a bunch of different
objects on the disk (Triangle, Rectangle, Circle, etc, they are all of
type shape)
one possibility would be to enumerate the types with an integer id,
and save the id as first element in the disk record
when loading the objects again you may read the id first, and then
pass it to a factory which creates the correct type of object and
loads it from the disk
further, to avoid a switch-case in the factory, we could implement a
registry (will see in a little how to do this)

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 38 / 60



Outline

1 Design Patterns

2 Singleton

3 Abstract Factory

4 Factory Method

5 Static factory method

6 Factory with Registry

7 Bibliography

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 39 / 60



How to create objects

Usually, objects are created by invoking the constructor

however, sometimes the constructor is not as flexible as we wish

an alternative technique is to use a static method in the class,
whose purpose is to create objects of the class in a more flexible
way
this technique is called static factory method

has almost nothing to do with the GoF’s factory method

class MyClass {
public MyClass(int param);

// std constructor
static public MyClass create(int param);

// static fact. method
};

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 40 / 60



Advantages

The first advantage is that factory methods can have descriptive
names
This is especially useful when there are many different ways to
create an object

the standard way is to implement many constructors with different
argument lists
however, the code readability of this technique is poor: it is difficult
to understand what a certain constructor does by just looking at the
list of parameters
sometimes, constructors differ just in the order of the parameters!

with static factory methods, instead:
It is possible to create different methods with different, more
descriptive names

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 41 / 60



Advantages

The second important advantage is that, unlike constructors, static
factory methods must not necessarily create an object

This can be useful for example when you want to control how many
objects are around, and eventually reuse them
For example, this technique is very useful when implementing an
enumeration of constant objects

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 42 / 60



Advantages

The second important advantage is that, unlike constructors, static
factory methods must not necessarily create an object

This can be useful for example when you want to control how many
objects are around, and eventually reuse them
For example, this technique is very useful when implementing an
enumeration of constant objects

The third advantage is the fact that they can create an object of a
subtype of the original type, without the client knowing this fact

Suppose for example that you implemented a BTree class
The client code uses the interface of BTree to perform operations
like insert/extract
Then, you realize that you need different implementation of BTree in
different contexts, because of performance / efficiency reasons
If the BTree is created with a factory method, you can simply switch
between the implementations by configuring the method differently

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 42 / 60



Implementation

Notice that the two implementation classes need not to be
exposed to the client: they can be completely hidden, and
changed at any time without even informing the customer
the extra function setType() can be optionally used to let the
client select the preferred implementation
therefore, we have maximum separation of concerns

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 43 / 60



Hiding the constructor?

The static factory method looks similar to the singleton pattern
(except that there is no limit to the number of instances)

You might be tempted to make the constructor private, so the only
way to construct an instance is to use the static factory method
however, keep in mind that, if the constructor is private, the class
cannot be sub-classed

The derived class cannot call the base class constructor!

therefore, if you want to sub-class, the constructor must be at least
protected

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 44 / 60



Other advantages

Another advantage is the fact that you can easily specify default
parameters between successive calls
this reduces the list of parameters of complex constructors

This is sometimes called telescoping constructor

class NutritionFacts {
public NutritionFacts(int servingSize, int servings)

{...}
public NutritionFacts(int servingSize, int servings, int calories)

{...}
public NutritionFacts(int servingSize, int servings, int calories,

int fat) {...}
public NutritionFacts(int servingSize, int servings, int calories,

int fat, int sodium) {...}
};
...
NutritionFacts label1(240, 8, 100, 0, 35, 27);
NutritionFacts label2(240, 8, 100, 0, 42, 25);
NutritionFacts label3(300, 10, 100, 0, 42, 25);

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 45 / 60



With static factory method

see SimpleBuilder example

notice how much more readable it is
Notes:

once all parameters have been set, they can be checked in the
NutritionFacts constructor
The setting order does not matter
This method can be extended to consistently build more complex
objects step by step (see Builder Pattern)

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 46 / 60



Outline

1 Design Patterns

2 Singleton

3 Abstract Factory

4 Factory Method

5 Static factory method

6 Factory with Registry

7 Bibliography

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 47 / 60



Factory Method

The UML diagram:

Suppose you have to create one of many product types
For example, you could use an ID (an integer, or a String) to identify
the product type
Therefore, createProduct() should take the ID and return the
specific product

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 48 / 60



The switch/case approach

public class ProductFactory{
public Product createProduct(String id){

if (id==ID1)
return new OneProduct();

if (id==ID2)
return new AnotherProduct();

... // so on for the other Ids

//if the id doesn’t have any of the expected values
return null;

}
...

}

Can you tell why this is bad? Which principle does it violate?

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 49 / 60



Reflection

We will now see how to use reflection to solve the problem
The idea is to maintain a data structure that establishes a
correspondence between the ID and the class to be created

At program start-up, each class registers itself on the data structure
the createProduct(ID) function will perform a look-up in the
data structure to select the class, and invokes the corresponding
constructor

Reflection enables Java code to discover information about the
fields, methods and constructors of loaded classes, and to use
reflected fields, methods, and constructors to operate on their
underlying counterparts

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 50 / 60



Registry with reflection

The product family ReflectDemo.java

interface Product {
String getName();

}

class ProductOne implements Product {
static {

ProductFactory.instance().register("One", ProductOne.class);
}
public String getName() { return "instance of ProductOne"; }

}

class ProductTwo implements Product {
static {

ProductFactory.instance().register("Two", ProductTwo.class);
}
public String getName() { return "instance of ProductTwo"; }

}

Note how the products get registered in the Factory

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 51 / 60

./examples/12.patterns-examples/ReflectDemo.java


The ProductFactory

ReflectDemo.java

class ProductFactory {
// Singleton
static private ProductFactory inst = new ProductFactory();
static public ProductFactory instance() { return inst; }

// The registry
private HashMap registry = new HashMap();
public void register(String productID, Class productClass) {

registry.put(productID, productClass);
}
public Product create(String ID) {

Class pClass = (Class)registry.get(ID);
if (pClass == null) {

System.err.println("Product " + ID + " not registered");
return null;

}
try {

Constructor pConstructor = pClass.getDeclaredConstructor(null);
return (Product)pConstructor.newInstance(null);

} catch (NoSuchMethodException e) {

This code snippet uses Class, and Constructor classes from
java.lang.reflect

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 52 / 60

./examples/12.patterns-examples/ReflectDemo.java


Usage

We must get sure that all classes get loaded before we access
use the factory

ReflectDemo.java

public class ReflectDemo {
static public void main(String args[]) {

try {
Class.forName("ProductOne");
Class.forName("ProductTwo");

} catch (ClassNotFoundException e) {
e.printStackTrace();

}

Product p1 = ProductFactory.instance().create("One");
System.out.println("I have created a " + p1.getName());

Product p2 = ProductFactory.instance().create("Two");
System.out.println("I have created a " + p2.getName());

}
}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 53 / 60

./examples/12.patterns-examples/ReflectDemo.java


Without reflection

Now, suppose we do not want to use reflection
The idea is to map ID to objects, and then call their factory method
(virtual constructor) to create a new object of the kind

RegistryDemo.java

interface Product {
String getName();
Product create();

}

class ProductOne implements Product {
static {

ProductFactory.instance().register("One", new ProductOne());
}
public String getName() { return "instance of ProductOne"; }
public ProductOne create() { return new ProductOne(); }

}

class ProductTwo implements Product {
static {

ProductFactory.instance().register("Two", new ProductTwo());
}
public String getName() { return "instance of ProductTwo"; }
public ProductTwo create() { return new ProductTwo(); }

}
G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 54 / 60

./examples/12.patterns-examples/RegistryDemo.java


The factory

RegistryDemo.java

class ProductFactory {
// Singleton
static private ProductFactory inst = new ProductFactory();
static public ProductFactory instance() { return inst; }

// The registry
private HashMap<String, Product> registry = new HashMap<String, Product
public void register(String ID, Product p) {

registry.put(ID, p);
}
public Product create(String ID) {

Product p = registry.get(ID);
if (p == null) {

System.err.println("Product " + ID + " not registered");
return null;

}
return p;

}
}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 55 / 60

./examples/12.patterns-examples/RegistryDemo.java


Usage

RegistryDemo.java

public class RegistryDemo {
static public void main(String args[]) {

try {
Class.forName("ProductOne");
Class.forName("ProductTwo");

} catch (ClassNotFoundException e) {
e.printStackTrace();

}

Product p1 = ProductFactory.instance().create("One");
System.out.println("I have created a " + p1.getName());

Product p2 = ProductFactory.instance().create("Two");
System.out.println("I have created a " + p2.getName());

}
}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 56 / 60

./examples/12.patterns-examples/RegistryDemo.java


Generalization?

Is it possible to generalise this code by using generics?

public class RegistryFactory<E extends VirtualConstructor> {
// Singleton
static private RegistryFactory<E> inst = new RegistryFactory<E>();
static public RegistryFactory<E> instance() { return inst; }

// The registry
private HashMap<String, E> registry = new HashMap<String, E>();
public void register(String ID, E p) {

registry.put(ID, p);
}
public E create(String ID) {

E p = registry.get(ID);
if (p == null) {

System.err.println("Product " + ID + " not registered");
return null;

}
return p.create();

}
}

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 57 / 60



Singleton and generics

Unfortunately the previous solution does not work
It is not possible to have a static variable (inst) that depends on a
generic parameter (E)
This is a limitation of Java (it is possible in C++)
It has to do with how generics are implemented

Therefore, the only solution is to make the create() return a
reference to the interface

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 58 / 60



Outline

1 Design Patterns

2 Singleton

3 Abstract Factory

4 Factory Method

5 Static factory method

6 Factory with Registry

7 Bibliography

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 59 / 60



Bibliography

Cristopher Alexander, Sara Ishikawa, Murray Silverstein, Max
Jacobson, Ingrid Fiksdhal-King, and Shlomo Angel.
A pattern language.
Oxford University Press, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

Barbara Liskov.
Data abstraction and hierarchy.
SIGPLAN Notice, 23(5), 1988.

Bertrand Meyer.
Object-Oriented Software Construction.
Prentice Hall, 1988.

G. Lipari (Scuola Superiore Sant’Anna) Design Patterns November 11, 2011 60 / 60


	Design Patterns
	Singleton
	Abstract Factory
	Factory Method
	Static factory method
	Factory with Registry
	Bibliography

