Object Oriented Software Design Il

Introduction to C++

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

February 20, 2012

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

http://retis.sssup.it/~lipari

@ Course contents

9 Introduction to C++
e Classes

0 Access Control

@ Memory layout

@ Pointers

a Function Overloading

@ Exercise

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 2/54

@ Course contents

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 3/54

@ To understand this course, you should at least know the basic C
syntax
@ functions declaration and function call,
@ global and local variables
@ pointers (will do again during the course)
@ structures

@ First part of the course: classes

@ Classes, objects, memory layout

@ Pointer and references

@ Copying

@ Inheritance, multiple inheritance

@ Access rules

@ Public, protected and private inheritance
@ Exceptions

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

@ Second part: templates

o Templates
@ The Standard Template Library

@ Third part: new standard

@ What does it change
lambda functions
auto
move semantic
new STL classes
o Safety to exceptions
@ Fourth part: patterns
@ Some patterns in C++
o Function objects
@ Template patterns
@ Meta-programming with templates
@ Fifth part: libraries
@ Thread library, synchronization
e Futures and promises
@ The Active Object pattern

o
®
o
®

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

9 Introduction to C++

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 6/54

Classes

C is not a high-level language.

— Brian Kernighan, inventor of C with D. M. Ritchie

Those types are not abstract: they are as real as int and float

— Doug Mcllroy

Actually I made up the term 'object-oriented’, and | can tell
you | did not have C++ in mind.

— Alan Kay

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 7154

Abstraction

@ An essential instrument for OO programming is the support for
data abstraction

@ C++ permits to define new types and their operations

@ Creating a new data type means defining:

@ Which elements it is composed of (internal structure);
@ How it is built/destroyed (constructor/destructor);
@ How we can operate on this type (methods/operations).

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

Data abstraction in C

@ We can do data abstraction in C (and in almost any language)

typedef struct _ conplex {
doubl e real _;
doubl e i magi nary_;

} el x;

voi d add_to(cnplx *a, cnplx *b);
void sub_fromcnpl x *a, cnplx *b);
doubl e get _nodul e(cnpl x *a);

@ We have to pass the main @ No information hiding: any
data to every function user can access the internal
@ name clashing: if another data using them improperly

abstract type defines a
function add_t o(), the
names will clash!

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 9/54

Classical example

cl ass Conpl ex {
doubl e real _;
doubl e i magi nary_;
public:
Conpl ex() ;
Conpl ex(doubl e a, double b);
~Conpl ex() ;

doubl e real () const;

doubl e i magi nary() const;

doubl e nodul e() const;

Conpl ex &operator =(const Conplex &a);
Conpl ex &operat or +=(const Conpl ex &a);
Conpl ex &operator-=(const Conplex &a));

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

How to use complex

Conpl ex c1; /1 default constructor
Conpl ex c2(1,2); /1 constructor
Compl ex ¢3(3,4); /'l constructor

cout << "cl=(" << cl.real() << ","
<< cl.imaginary() << ")" << endl;

cl = c2; /1 assi gnment
c3 += cl; /'l operator +=
cl = c2 + c3; /1 ERROR operator + not yet defined

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 11/54

Using new data types

@ The new data type is used just like a predefined data type
@ itis possible to define new functions for that type:
o real (),i magi nary() and nodul e()
@ Itis possible to define new operators
@ =, +=and-=
@ The compiler knows automatically which function/operator must be
invoked
@ C++ is a strongly typed language
@ the compiler knows which function to invoke by looking at the type

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 12 /54

e Classes

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 13/54

Class

@ Class is the main construct for building new types in C++
@ A class is almost equivalent to a struct with functions inside

@ In the C-style programming, the programmer defines structs, and
global functions to act on the structs

@ In C++-style programming, the programmer defines classes with
embedded functions

class Md ass {
int a;
public:
int nyfunction(int param;
e—_—

~~—_Class declaration

Remember the semicolon! |

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 14 /54

@ A class contains members
@ A member can be

@ any kind of variable (member variables)
@ any kind of function (member functions or methods)

class Myd ass {
int a;
doubl e b;
public:
int c;

void f();

int getA();

i nt nodi fy(doubl e b);
H

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 15/54

@ A class contains members
@ A member can be

@ any kind of variable (member variables)
@ any kind of function (member functions or methods)

class Myd ass { | member variables (private) I

int a; —/
doubl e b;

public:
int c;

void f();
int getA();
i nt nodi fy(doubl e b);

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

@ A class contains members
@ A member can be

@ any kind of variable (member variables)
@ any kind of function (member functions or methods)

class Myd ass { | member variables (private) I

int a; —/
doubl e b;

public:
int c;

=~ —————— | member variable (public) |

void f();

int getA();

i nt nodi fy(doubl e b);
H

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

@ A class contains members
@ A member can be

@ any kind of variable (member variables)
@ any kind of function (member functions or methods)

class Myd ass { | member variables (private) I
int a; —/
doubl e b;

public:
hnt c; ~ ————— | member variable (public) I
void f();
int getA();
int modi fy(doM

H L member functions (public) |

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro

February 20, 2012

Declaring objects of a class:

constructor

@ An object is an instance of a class
@ An object is created by calling a special function called constructor

@ A constructor is a function that has the same name of the class and

no return value

@ It may or may not have parameters;

@ Itis invoked in a special way

class Myd ass {

{

cout << "Constructor"<<endl
}

H

; | Declaration of the constructor |
publ i c: —/
MyC ass()

| Invoke the constructor to create an
Myd ass obj ; . | object

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro

February 20, 2012 16 /54

Constructor - 1l

@ Constructors with parameters

class MyCd ass {
int a;
int b;
public:
MyCl ass(int x);
MW d ass(int x, int y);

, e

MyC ass obj ;
R

MyCl ass obj 1(2);
Myd ass obj 2(2, 3);

A class can have many
constructors

This is an error, no constructor
without parameters

/—

Callls the first constructor

Calls the second constructor

int nmyvar(2);
doubl e pi (3.14);

Same syntax is valid for primitive
data types

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intr

0 February 20, 2012 17 /54

Default constructor

@ Rules for constructors
@ If you do not specify a constructor, a default one with no parameters
is provided by the compiler
@ If you provide a constructor (any constructor) the compiler will not
provide a default one for you

@ Constructors are used to initialise members

class Myd ass {
int a;
int b;
public:
Myd ass(int x, int y)

a =x; b= 2xy;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 18 /54

Initialization list

@ Members can be initialised through a special syntax
@ This syntax is preferable (the compiler can catch some obvious

mistake)

@ use it whenever you can (i.e. almost always)

class MWd ass {

int a;
int b;
public:
My d ass(int x,
{ a(x), b(y)

// other initialisation

inty) @ 1 A comma separated list of constructors,

following the :

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro

February 20, 2012 19/54

Accessing member objects

@ Members of one object can be accessed using the dot notation,
similarly to structs in C

class Md ass {

publi c:
int a;
int f();
void g(int i, int ii);
}; ioni - :
— J{;\;fl)g(;nmg to a member variable of ob
M/ d ass x;
MyCl ass v;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 20/54

Accessing member objects

@ Members of one object can be accessed using the dot notation,
similarly to structs in C

class Md ass {

publi c:

int a;

int f();

void g(int i, int ii); L~ Assigning to a member variable of ob-
} : ject x
MWd ass x; |_— Assigning to a member variable of ob-
Myd ass vy; jecty

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 20/54

Accessing member objects

@ Members of one object can be accessed using the dot notation,
similarly to structs in C

class Md ass {

publi c:
int a;
int f(); Assigning to a member variable of ob-
i i i ; AN - ject x
void g(int i, int ii);
H

Assigning to a member variable of ob-

M/ C ass x; jecty
MyCl ass v;
| — Calling member function f() of object x |
.a = 5;
a 7 /
f
g .

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 20/54

Accessing member objects

@ Members of one object can be accessed using the dot notation,
similarly to structs in C

class Md ass {

publi c:
int a; Assigning to a member variable of ob-
int f(); /— ject x
void g(int i, int ii);
}) L~ Assigning to a member variable of ob-
jecty

M/ d ass x;
MWd ass vy; |_— Calling member function f() of object x I
.a = 5; /
.a 7; | _— Calling member function g() of objecty |
f .
9

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 20/54

Implementing member functions

@ You can implement a member function (including constructors) in

a separate .cpp file

complex.h

complex.cpp

cl ass Conpl ex {
doubl e real _;
doubl e ing_;
publi c:

doubl e nodul e() const;

doubl e Conpl ex: : modul e()
{

doubl e tenp
tenp = real _ * real _ +
ing_ o+ ing_;

return tenp;

}

@ This is preferable most of the times
@ put implementation in include files only if you hope to use in-lining

optimisation

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro February 20, 2012 21/54

Accessing internal members

doubl e Conpl ex: : nodul e() const
{

doubl e tenp;
tenp = real _ * real _ + ing_ * ing_;
return tenp;

}

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 22 /54

Accessing internal members

doubl e Conpl ex: : nodul e() const

{ x
doubl e t enp;

tenp = real _ * real _ + ing_ * ing_;
return tenp;

N scope resolution I

}

@ The :: operator is called scope resolution operator

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 22 /54

Accessing internal members

doubl e Conpl ex: : nodul e() const

{ x
doubl e t enp;

tenp = real _ * real _ + ing_ * ing_;
return tenp;

N scope resolution I

}

@ The :: operator is called scope resolution operator
@ like any other function, we can create local variables

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 22 /54

Accessing internal members

doubl e Conpl ex: : nodul e() const

{ x
doubl e t enp;

. . N scope resolution I
tenp = real _ * real _ + * ing_;
return tenp;

}

access to internal variable |

@ The :: operator is called scope resolution operator
@ like any other function, we can create local variables

@ member variables and functions can be accessed without dot or
arrow

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro

February 20, 2012 22 /54

0 Access Control

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 23/54

Access control

@ A member can be:

@ private: only member functions of the same class can access it;
other classes or global functions can't

@ protected: only member functions of the same class or of derived
classes can access it: other classes or global functions can't

@ public: every function can access it

class Myd ass {

private: M/ d ass dat a;
int a;

public: cout << data. a; /] ERROR!
int c; cout << data. c; Il K

s

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 24154

Access control

@ Default is private
@ An access control keyword defines access until the next access
control keyword

Int a;
doubl e b; —\\ private (default) |
publi c:
int c;
I public |
void f();
int getA();
private: private again I

int modify(double b); |/~
b

February 20, 2012 25/54

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro

Access control and scope

int Xxx;

int xx;
public:

voi d f()’\

class A {\

global variable

member variable

access local xx

access global xx

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro

February 20, 2012

Why access control?

@ The technique of declaring private members is also called
encapsulation

@ In this way we can precisely define what is interface and what is
implementation

@ The public part is the interface to the external world

@ The private part is the implementation of that interface

@ When working in a team, each group take care of a module

@ To ensure that the integration is done correctly and without
problems, the programmers agree on interfaces

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

@ Some people think that private is synonym of secret
@ they complain that the private part is visible in the header file

@ private means not accessible from other classes and does not
mean secret

@ The compiler needs to know the size of the object, in order to
allocate memory to it

@ In an hypothetical C++, if we hide the private part, the compiler
cannot know the size of the object

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 28 /54

class A {
friend class B;
int vy, ™~
void f(): B is friend of A |
publi c:
int g();
}
class B {
int x;
public:
void f(A &);
}
void B::f(A &)
{
X = a.y;
a.f(); y - B can access private members of A I

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 29/54

Friend functions and operator

@ Even a global function or a single member function can be friend
of a class

class A {

friend B::f(); «— | friend member function |

friend h();

int vy;
void f();
publi c:

int g(); ™\ friend global function I

s

@ It is better to use the friend keyword only when it is really
necessary because it breaks the access rules.

@ "Friends, much as in real life, are often more trouble than their
worth." — Scott Meyers

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 30/54

Nested classes

@ It is possible to declare a class inside another class
@ Access control keywords apply

class A {
class B {
int a;
public:
int b;
}
B obj;
public:
void f();
b

@ Class B is private to class A: it
is not part of the interface of A,
but only of its implementation.

@ However, Ais not allowed to
access the private part of B!
(A:: f () cannot access
B:: a).

@ To accomplish this, we have to
declare A as friend of B

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro February 20, 2012 31/54

@ Memory layout

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 32/54

Memory layout

@ Let us recapitulate the rules for the lifetime and visibility of
variables

@ Global variables are defined outside of any function. Their lifetime
is the duration of the program: they are created when the program
is loaded in memory, and deleted when the program exits

@ Local variables are defined inside functions or inside code blocks
(delimited by curly braces { and }). Their lifetime is the execution of
the block: they are created before the block starts executing, and
destroyed when the block completes execution

@ Global and local variables are in different memory segments,
and are managed in different ways

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 33/54

Memory segments

@ The main data segments of a program are shown below

@ The BSS segment contains
global variables. Itis
divided into two segments,
one for initialised data (i.e.
data that is initialised when
declared), and non-initialised
data.

@ The size of this segment is
statically decided when the
program is loaded in
memory, and can never
change during execution

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro

HEAP <—+— Dynamic memory
STACK <=—t— Local variables
BSS <——1— Global variables

February 20, 2012 34/54

Memory segments

@ The main data segments of a program are shown below

@ The STACK segment
contains local variables
@ Its size is dynamic: it can
grow or shrink, depending
on how many local
variables are in the current pss P e
block

HEAP <—+t— Dynamic memory

STACK =—4— Local variables

February 20, 2012 34/54

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro

Memory segments

@ The main data segments of a program are shown below

i HEAP <—+t— Dynamic memory
@ The HEAP segment contains
dynamic memory that is
. STACK =—4— Local variables
managed directly by the
programmer
BSS <——— Global variables

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro

February 20, 2012 34/54

@ Here is an example:

int a=5; // initialised global data
int b; /1 non initialised global data
int f(int i) /1 i, d and s[] are local variables
/1 will be created on the stack when
doubl e d; /1 function f() is invoked
char s[] = "Lipari";
}
int nain()
int s, z; /Il local variables, are created on the stack
/1 when the programstarts
f(); /1 here f() is invoked, so the stack for f() is created
}

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 35/54

Outline

@ Pointers

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 36 /54

Pointer

@ A pointer is a variable that can hold a memory address

@ Basic syntax:

int a = b5;
int b =7,
int xp;
p = &

cout << p << endl;

cout << *p << endl;

cout << *p << endl;

N\ Declaration of a pointer to an integer vari-
able

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro February 20, 2012 37/54

@ A pointer is a variable that can hold a memory address

@ Basic syntax:

int a = b5;
int b =7,
int xp;
p = &

cout << p << endl;

cout << *p << endl;

cout << *p << endl;

N Declaration of a pointer to an integer vari- |
able

o p takes the address of a |

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro February 20, 2012 37/54

@ A pointer is a variable that can hold a memory address

@ Basic syntax:

int a =5;
int b

I
X

cout << p << endl;

cout << *p << endl;

cout << *p << endl;

int xp;
p:&a; \

~— Declaration of a pointer to an integer vari- |
able

~_ P takes the address of a |

\ print the address I

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro February 20, 2012 37/54

@ A pointer is a variable that can hold a memory address
@ Basic syntax:

int a = b5;
int b =7,
int xp;

. Declaration of a pointer to an integer vari-
p = &a;

\ able
cout << p << endl; \\ p takes the address of a |
—\\ print the address |

*p = 6; \ : :
prints the value in a |

cout << *p << endl;

cout << *p << endl;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 37/54

@ A pointer is a variable that can hold a memory address
@ Basic syntax:

int a = 5;
int b =7,
Int *p; | Declaration of a pointer to an integer vari- |
able
p = &a;
(_\\ p takes the address of a |

cout << p << endl;
~— print the address I

cout << *p << endl;

<_\
N prints the value in a I

*p = 6;
p = &b \\ changes the valueina = 6 |

cout << *p << endl;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

@ A pointer is a variable that can hold a memory address
@ Basic syntax:

int a = 5;
int b =7 | Declaration of a pointer to an integer vari-
int *p; . — able
p = &a; p takes the address of a |
cout << p << endl; | print the address |
cout << *p << endl; | |pinsthevalueina |
*p = 6; ;

T ————— | changesthevalueina = 6 |
p = &b;

e now p points to b |

cout << *p << endl;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

@ A pointer is a variable that can hold a memory address
@ Basic syntax:

int a =5; | Declaration of a pointer to an integer vari-
int b =7 _/ able
int xp;

| p takes the address of a |
p = &a; /

print the address I

| —
cout << p << endl; -

|_— prints the value in a I
cout << *p << endl;
sp = 6 S changes the valueina = 6 |
p = &b; S E— now p points to b I
cout << *p << endl; - | printsthe value in b I

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

@ The name of an array is equivalent to a constant pointer to the first
element

@ With non-const pointers we can do pointer arithmetic

char nane[] = "G useppe"

—~

char *p = nane; \\\
p++; prints “G” |

assert(p == nanme+l);

cout << *pame << endl

while (*p '= 0)
cout << *(p++);
cout << endl;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 38/54

@ The name of an array is equivalent to a constant pointer to the first
element

@ With non-const pointers we can do pointer arithmetic

char nane[] = "G useppe"
cout << *panme << endl

char *p = nane;

\ prints “G” I

\ declares a pointer to the first element of the
array

J)

pH+;

assert(p == nanme+l);

while (*p '= 0)
cout << *(p++);
cout << endl;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 38/54

@ The name of an array is equivalent to a constant pointer to the first
element

@ With non-const pointers we can do pointer arithmetic

char nane[] = "G useppe";

cout << *name << endl;

\ prints “G” |

char *p = nane;

—
TN

p++; \ declares a pointer to the first element of the
array
== + -
assert(p name+1); \ Increments the pointer, now points to “i” I

while (*p '= 0)
cout << *(p++);
cout << endl;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 38/54

@ The name of an array is equivalent to a constant pointer to the first

element

@ With non-const pointers we can do pointer arithmetic

cout << *name << endl
char *p = nane;

p++;

assert (p == name+l);
while (*p '= 0)

cout << *(p++);
cout << endl;

char nane[] = "G useppe";

D prints “G” I
(_\\ declares a pointer to the first element of the
array
Increments the pointer, now points to “i” |
\ this assertion is correct |

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro February 20, 2012 38/54

@ The name of an array is equivalent to a constant pointer to the first
element

@ With non-const pointers we can do pointer arithmetic

char nane[] = "G useppe";
prints “G” |

cout << *pane << endl;

declares a pointer to the first element of the

char *p = nane; —T amay
p++; <1 Increments the pointer, now points to “i” I
assert == nane+l); : o
(p) 1 this assertion is correct |
while (*p '= 0) y
cout << *(p++); ~— zero marks the end of the string |

cout << endl;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 38/54

@ The name of an array is equivalent to a constant pointer to the first
element
@ With non-const pointers we can do pointer arithmetic

char name[] = "G useppe"; / prints “G” |
cout << xnane << endl; /| declares a pointer to the first element of the
" array
char *p = nane; 4_/
Increments the pointer, now points to “i” |
L~
p++; .
— this assertion is correct |
assert(p == name+l); -
. zero marks the end of the string
while (*p !'= 0) o |
cout << = ++) ; - -
t << dl (p)) ~~~—__ prints the content of address pointed by p,
cou endl, and increments it

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 38/54

Dynamic memory

@ Dynamic memory is managed by the user
o InC:

@ to allocate memory, call function mal | oc
@ to deallocate, call free
@ Both take pointers to any type, so they are not type-safe

@ |In C++

@ to allocate memory, use operator new
@ to deallocate, use operator del et e
@ they are more type-safe

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

The new operator

@ The newand del et e operators can be applied to primitive types,
and classes

@ oper at or newautomatically calculates the size of memory to be
allocated

int *p = newint(5); |
class A { ... };

A *q = new A(); Allocates an integer pointed by p I

del ete p;

del ete q;

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 40/54

The new operator

@ The newand del et e operators can be applied to primitive types,

and classes

@ oper at or newautomatically calculates the size of memory to be

allocated

class A { ... };
A xgq = new A();

del ete p;

del ete q;

int *p = newint(5); |

\ Allocates an integer pointed by p I

< Does two things:

1) Allocates memory for an object of class A
2) calls the constructor of A()

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro February 20, 2012 40/ 54

The new operator

@ The newand del et e operators can be applied to primitive types,

and classes

@ oper at or newautomatically calculates the size of memory to be

allocated

class A { ... };
A xgq = new A();

del ete p;

del ete q;

int *p = newint(5); |

\ Allocates an integer pointed by p |
| _— Does two things:
] 1) Allocates memory for an object of class A
2) calls the constructor of A()
™~ Deallocates the memory pointed by p |

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro February 20, 2012 40/ 54

The new operator

@ The newand del et e operators can be applied to primitive types,

and classes
@ oper at or newautomatically calculates the size of memory to be
allocated
- - Allocates an integer pointed by p
int *p = newint(5); |~ |
. Does two things:
class A{ ... }; / 1) Allocates memory for an object of class A
2) calls the constructor of A()
A *q = new A(); _/
. — Deallocates the memory pointed by p I
del ete p;]
Does two things:
del ete q; P 1) Calls the destructor for A
2) deallocates the memory pointed by q

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

@ The destructor is called just before the object is deallocated.
@ It is always called both for all objects (allocated on the stack, in

global memory, or dynamically)

@ If the programmer does not define a constructor, the compiler
automatically adds one by default (which does nothing)

@ Syntax
class A {
public:
A() { ... } /] constructor
~A() { ... } I/ destructor
b

The destructor never
takes any parameter

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro

February 20, 2012 41 /54

See ./ exanpl es/ 01. sunmar y- exanpl es/ destruct or. cpp

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 42 /54

./examples/01.summary-examples/destructor.cpp

Why a destructor

@ A destructor is useful when an object allocates memory
@ so that it can deallocate it when the object is deleted

class A{ ... };
class B {
bl ;A‘C* P: @ p is initialised when the
P B(j { object is created
p = new A(); @ The memory is
deallocated when the
~B() { object is deleted
del ete p;
}
b

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 43 /54

New and delete for arrays

@ To allocate an array, use this form

int *p = newint[5]; // allocates an array of 5 int
delete [] p; /1 notice the del ete syntax
A g = new A[10]; /1 allocates an array of 10

- /1 objects of type A
delete [] q;

@ In the second case, the default constructor is called to build the 10
objects

@ Therefore, this can only be done is a default constructor (without
arguments) is available

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 44 /54

Null pointer

@ The address 0 is an invalid address
@ (no data and no function can be located at 0)

@ therefore, in C/C++ a pointer to 0 is said to be a null pointer, which
means a pointer that points to nothing.

@ Dereferencing a null pointer is always a bad error (null pointer
exception, or segmentation fault)
@ In C, the macro NULL is used to mark 0, or a pointer to O
@ however, 0 can be seen to be of integer type, or a null pointer

@ In the new C++, the null pointer is indicated with the constant
nul | ptr

@ this constant cannot be automatically converted to an integer

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 45/54

a Function Overloading

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 46 /54

Function overloading

@ In C++, the argument list is part of the name of the function

@ this mysterious sentence means that two functions with the same
name but with different argument list are considered two different
functions and not a mistake

@ If you look at the internal name used by the compiler for a
function, you will see three parts:
@ the class name

@ the function name
@ the argument list

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 47 /54

Function overloading

class A { -
; A f_int |
public: T —
void f(int a);: —_— |
void f(int a, int b); 1~ Af int_int |

voi d f(double g);
b ‘_\
class B { ™~_ _Af _double |
publi c:

void f(int a);

y 1 Bf_int |

@ To the compiler, they are all different functions!
@ beware of the type...

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

Which one is called?

class A { A a;
public: B b;
void f(int a);
void f(int a, int b); ||a.f(5);
voi d f(double g);

b b.f(2);

class B {

public: a.f(3.0);
void f(int a); a.f(2,3);

}; a.f(2.5, 3);

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 49 /54

Which one is called?

class A { A a;
public: B b;
void f(int a);
void f(int a, int b); ||a.f(5);

voi d f(doubl e g); \
I b.f(2); _Af int |

class B { —
public: a.f(3.0);

void f(int a); a.f(2,3);
}; a.f(2.5, 3);

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 49 /54

Which one is called?

class A { A a;
public: B b;
void f(int a);
void f(int a, int b); ||a.f(5);

voi d f(double g); T —— 1 Afint I
}; b.f(2);
class B { \ _
public: a.f(3.0); B f_int I
void f(int a); a.f(2,3);
}; a.f(2.5, 3);

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 49 /54

Which one is called?

class A { A a;
public: B b;
void f(int a); :
void f(int a int b): |laf(5): . ——t— Af N |
voi d f(double g);
I b.f(2); —— | Bf int |
class B { —
public: a.f(3.0);
void f(int a); at(23): T—_ At double I
}; a.f(2.5, 3);

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 49 /54

Which one is called?

class A { A a;
public: B b; | — __Af_int |

void f(int a); /
void f(int a, int b); [|a.f(5);

void f(double g);
b.f(2); — — |

| B f_ int |

ciass B {

public: a.f(3.0; ~ 1 __Af_double |
void f(int a); a.f(2,3);

b a.f(2.5 3): L _Af_int_int I

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

Which one is called?

class A { A a; | - __Af_int I
public: B b /

void f(int a); :

void f(int a, int b); ||a f(5); - __Bf_int |

void f(double g); —/
i b.7(2); A f_doubl e
class B { | — AT |
publ i c: a.f(3.0); _/

void f(int a); af(2,3; — | Afintint |
; a.f(2.5 3);
} ()

_Af int_int I

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012

Return values

@ Notice that return values are not part of the name

@ the compiler is not able to distinguish two functions that differs only
on return values

class A {
int floor(double a);
doubl e fl oor(double a);

H

@ This causes a compilation error
@ It is not possible to overload a return value

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 50/54

Default arguments in functions

@ Sometime, functions have long argument lists
@ Some of these arguments do not change often

@ We would like to set default values for some argument
@ This is a little different from overloading, since it is the same
function we are calling!

int f(int a, int b =0);

f(12); /1 it is equivalent to f(12,0);

@ The combination of overloading with default arguments can be
confusing

@ itis a good idea to avoid overusing both of them

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 51/54

@ Exercise

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 52 /54

Time to do an example

@ Let us implement a Stack of integers class

St ack st ack;

st ack. push(12);
st ack. push(7);

cout << stack. pop();
cout << stack. pop();

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 53 /54

Interface

class Stack {

public:
Stack(i nt maxsize);

~St ack(); \
| Constructor: maxsize is the max-

voi d push(i nt a) : IsT;cT number of elements on the
int pop();

int peek();
int size();

b

@ Hint: Use an array to store the elements

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 54 /54

Interface

class Stack {

public:
Stack(i nt maxsize);

~Stack(); (__ Constructor: maxsize is the max- |

imum number of elements on the

void push(int a); stack

! nt pop(); | Destructor |
int peek();

int size();

b

@ Hint: Use an array to store the elements

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 54 /54

Interface

b

class Stack {

public:

Stack(i nt maxsize);
~St ack();

void push(int a);\

int pop();
int peek();
int size();

P

@ Hint: Use an array to store the elements

Constructor: maxsize is the max-
imum number of elements on the
stack

Destructor |

Returns the top element |

G. Lipari (Scuola Superiore Sant'/Anna)

C++ Intro

February 20, 2012 54 /54

Interface

class Stack {

| Constructor: maxsize is the max-|

publ i c: / imum number of elements on the
Stack(int maxsize); stack

~Stack();
T ————— | Destructor |
voi d push(int a);
int pop(); | Returns the top element I
int peek(); /
int size(); Returns the current number of ele-
}; ments

@ Hint: Use an array to store the elements

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro February 20, 2012 54 /54

	Course contents
	Introduction to C++
	Classes
	Access Control
	Memory layout
	Pointers
	Function Overloading
	Exercise

