
Object Oriented Software Design II
Introduction to C++

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

February 20, 2012

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 1 / 54

http://retis.sssup.it/~lipari

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 2 / 54

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 3 / 54

Prerequisites

To understand this course, you should at least know the basic C
syntax

functions declaration and function call,
global and local variables
pointers (will do again during the course)
structures

First part of the course: classes
Classes, objects, memory layout
Pointer and references
Copying
Inheritance, multiple inheritance
Access rules
Public, protected and private inheritance
Exceptions

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 4 / 54

Summary - cont.

Second part: templates
Templates
The Standard Template Library

Third part: new standard
What does it change
lambda functions
auto
move semantic
new STL classes
Safety to exceptions

Fourth part: patterns
Some patterns in C++
Function objects
Template patterns
Meta-programming with templates

Fifth part: libraries
Thread library, synchronization
Futures and promises
The Active Object pattern

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 5 / 54

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 6 / 54

Classes

C is not a high-level language.

– Brian Kernighan, inventor of C with D. M. Ritchie

Those types are not abstract: they are as real as int and float

– Doug McIlroy

Actually I made up the term ’object-oriented’, and I can tell
you I did not have C++ in mind.

– Alan Kay

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 7 / 54

Abstraction

An essential instrument for OO programming is the support for
data abstraction

C++ permits to define new types and their operations
Creating a new data type means defining:

Which elements it is composed of (internal structure);
How it is built/destroyed (constructor/destructor);
How we can operate on this type (methods/operations).

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 8 / 54

Data abstraction in C

We can do data abstraction in C (and in almost any language)

typedef struct __complex {
double real_;
double imaginary_;

} cmplx;

void add_to(cmplx *a, cmplx *b);
void sub_from(cmplx *a, cmplx *b);
double get_module(cmplx *a);

We have to pass the main
data to every function

name clashing: if another
abstract type defines a
function add_to(), the
names will clash!

No information hiding: any
user can access the internal
data using them improperly

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 9 / 54

Classical example

class Complex {
double real_;
double imaginary_;

public:
Complex();
Complex(double a, double b);
~Complex();

double real() const;
double imaginary() const;
double module() const;
Complex &operator =(const Complex &a);
Complex &operator+=(const Complex &a);
Complex &operator-=(const Complex &a));

};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 10 / 54

How to use complex

Complex c1; // default constructor
Complex c2(1,2); // constructor
Complex c3(3,4); // constructor

cout << "c1=(" << c1.real() << ","
<< c1.imaginary() << ")" << endl;

c1 = c2; // assignment
c3 += c1; // operator +=
c1 = c2 + c3; // ERROR: operator + not yet defined

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 11 / 54

Using new data types

The new data type is used just like a predefined data type
it is possible to define new functions for that type:

real(), imaginary() and module()
It is possible to define new operators

=, += and -=

The compiler knows automatically which function/operator must be
invoked

C++ is a strongly typed language
the compiler knows which function to invoke by looking at the type

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 12 / 54

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 13 / 54

Class

Class is the main construct for building new types in C++
A class is almost equivalent to a struct with functions inside

In the C-style programming, the programmer defines structs, and
global functions to act on the structs
In C++-style programming, the programmer defines classes with
embedded functions

class MyClass {
int a;

public:
int myfunction(int param);

};

Class declaration

Remember the semicolon!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 14 / 54

Members

A class contains members
A member can be

any kind of variable (member variables)
any kind of function (member functions or methods)

class MyClass {
int a;
double b;

public:
int c;

void f();
int getA();
int modify(double b);

};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 15 / 54

Members

A class contains members
A member can be

any kind of variable (member variables)
any kind of function (member functions or methods)

class MyClass {
int a;
double b;

public:
int c;

void f();
int getA();
int modify(double b);

};

member variables (private)

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 15 / 54

Members

A class contains members
A member can be

any kind of variable (member variables)
any kind of function (member functions or methods)

class MyClass {
int a;
double b;

public:
int c;

void f();
int getA();
int modify(double b);

};

member variables (private)

member variable (public)

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 15 / 54

Members

A class contains members
A member can be

any kind of variable (member variables)
any kind of function (member functions or methods)

class MyClass {
int a;
double b;

public:
int c;

void f();
int getA();
int modify(double b);

};

member variables (private)

member variable (public)

member functions (public)

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 15 / 54

Declaring objects of a class: constructor

An object is an instance of a class
An object is created by calling a special function called constructor

A constructor is a function that has the same name of the class and
no return value
It may or may not have parameters;
It is invoked in a special way

class MyClass {
public:
MyClass()
{
cout << "Constructor"<<endl;

}
};

MyClass obj;

Declaration of the constructor

Invoke the constructor to create an
object

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 16 / 54

Constructor - II

Constructors with parameters

class MyClass {
int a;
int b;

public:
MyClass(int x);
MyClass(int x, int y);

};

MyClass obj;
MyClass obj1(2);
MyClass obj2(2,3);

int myvar(2);
double pi(3.14);

A class can have many
constructors

This is an error, no constructor
without parameters

Calls the first constructor

Calls the second constructor

Same syntax is valid for primitive
data types

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 17 / 54

Default constructor

Rules for constructors
If you do not specify a constructor, a default one with no parameters
is provided by the compiler
If you provide a constructor (any constructor) the compiler will not
provide a default one for you

Constructors are used to initialise members

class MyClass {
int a;
int b;

public:
MyClass(int x, int y)
{

a = x; b = 2*y;
}

};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 18 / 54

Initialization list

Members can be initialised through a special syntax
This syntax is preferable (the compiler can catch some obvious
mistake)
use it whenever you can (i.e. almost always)

class MyClass {
int a;
int b;

public:
MyClass(int x, int y) :
a(x), b(y)

{
// other initialisation

}
};

A comma separated list of constructors,
following the :

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 19 / 54

Accessing member objects

Members of one object can be accessed using the dot notation,
similarly to structs in C

class MyClass {
public:
int a;
int f();
void g(int i, int ii);

};

MyClass x;
MyClass y;

x.a = 5;
y.a = 7;
x.f();
y.g(5, 10);

Assigning to a member variable of ob-
ject x

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 20 / 54

Accessing member objects

Members of one object can be accessed using the dot notation,
similarly to structs in C

class MyClass {
public:
int a;
int f();
void g(int i, int ii);

};

MyClass x;
MyClass y;

x.a = 5;
y.a = 7;
x.f();
y.g(5, 10);

Assigning to a member variable of ob-
ject x

Assigning to a member variable of ob-
ject y

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 20 / 54

Accessing member objects

Members of one object can be accessed using the dot notation,
similarly to structs in C

class MyClass {
public:
int a;
int f();
void g(int i, int ii);

};

MyClass x;
MyClass y;

x.a = 5;
y.a = 7;
x.f();
y.g(5, 10);

Assigning to a member variable of ob-
ject x

Assigning to a member variable of ob-
ject y

Calling member function f() of object x

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 20 / 54

Accessing member objects

Members of one object can be accessed using the dot notation,
similarly to structs in C

class MyClass {
public:
int a;
int f();
void g(int i, int ii);

};

MyClass x;
MyClass y;

x.a = 5;
y.a = 7;
x.f();
y.g(5, 10);

Assigning to a member variable of ob-
ject x

Assigning to a member variable of ob-
ject y

Calling member function f() of object x

Calling member function g() of object y

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 20 / 54

Implementing member functions

You can implement a member function (including constructors) in
a separate .cpp file

complex.h

class Complex {
double real_;
double img_;

public:
...
double module() const;
...

};

complex.cpp

double Complex::module()
{
double temp;
temp = real_ * real_ +

img_ * img_;
return temp;

}

This is preferable most of the times
put implementation in include files only if you hope to use in-lining
optimisation

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 21 / 54

Accessing internal members

double Complex::module() const
{
double temp;
temp = real_ * real_ + img_ * img_;
return temp;

}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 22 / 54

Accessing internal members

double Complex::module() const
{
double temp;
temp = real_ * real_ + img_ * img_;
return temp;

}

scope resolution

The :: operator is called scope resolution operator

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 22 / 54

Accessing internal members

double Complex::module() const
{
double temp;
temp = real_ * real_ + img_ * img_;
return temp;

}

scope resolution

The :: operator is called scope resolution operator

like any other function, we can create local variables

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 22 / 54

Accessing internal members

double Complex::module() const
{
double temp;
temp = real_ * real_ + img_ * img_;
return temp;

}

scope resolution

access to internal variable

The :: operator is called scope resolution operator

like any other function, we can create local variables

member variables and functions can be accessed without dot or
arrow

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 22 / 54

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 23 / 54

Access control

A member can be:
private: only member functions of the same class can access it;
other classes or global functions can’t
protected: only member functions of the same class or of derived
classes can access it: other classes or global functions can’t
public: every function can access it

class MyClass {
private:

int a;
public:

int c;
};

MyClass data;

cout << data.a; // ERROR!
cout << data.c; // OK

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 24 / 54

Access control

Default is private

An access control keyword defines access until the next access
control keyword

class MyClass {
int a;
double b;

public:
int c;

void f();
int getA();

private:
int modify(double b);

};

private (default)

public

private again

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 25 / 54

Access control and scope

int xx;

class A {
int xx;

public:
void f();

};

void A::f()
{

xx = 5;
::xx = 3;

xx = ::xx + 2;
}

global variable

member variable

access local xx

access global xx

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 26 / 54

Why access control?

The technique of declaring private members is also called
encapsulation

In this way we can precisely define what is interface and what is
implementation
The public part is the interface to the external world
The private part is the implementation of that interface
When working in a team, each group take care of a module
To ensure that the integration is done correctly and without
problems, the programmers agree on interfaces

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 27 / 54

Private

Some people think that private is synonym of secret
they complain that the private part is visible in the header file

private means not accessible from other classes and does not
mean secret

The compiler needs to know the size of the object, in order to
allocate memory to it

In an hypothetical C++, if we hide the private part, the compiler
cannot know the size of the object

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 28 / 54

Friends

class A {
friend class B;
int y;
void f();

public:
int g();

};

class B {
int x;

public:
void f(A &a);

};

void B::f(A &a)
{

x = a.y;
a.f();

}

B is friend of A

B can access private members of A

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 29 / 54

Friend functions and operator

Even a global function or a single member function can be friend
of a class

class A {
friend B::f();
friend h();
int y;
void f();

public:
int g();

};

friend member function

friend global function

It is better to use the friend keyword only when it is really
necessary because it breaks the access rules.

"Friends, much as in real life, are often more trouble than their
worth." – Scott Meyers

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 30 / 54

Nested classes

It is possible to declare a class inside another class

Access control keywords apply

class A {
class B {

int a;
public:

int b;
}
B obj;

public:
void f();

};

Class B is private to class A: it
is not part of the interface of A,
but only of its implementation.

However, A is not allowed to
access the private part of B!!
(A::f() cannot access
B::a).

To accomplish this, we have to
declare A as friend of B

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 31 / 54

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 32 / 54

Memory layout

Let us recapitulate the rules for the lifetime and visibility of
variables

Global variables are defined outside of any function. Their lifetime
is the duration of the program: they are created when the program
is loaded in memory, and deleted when the program exits
Local variables are defined inside functions or inside code blocks
(delimited by curly braces { and }). Their lifetime is the execution of
the block: they are created before the block starts executing, and
destroyed when the block completes execution

Global and local variables are in different memory segments,
and are managed in different ways

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 33 / 54

Memory segments

The main data segments of a program are shown below

The BSS segment contains
global variables. It is
divided into two segments,
one for initialised data (i.e.
data that is initialised when
declared), and non-initialised
data.

The size of this segment is
statically decided when the
program is loaded in
memory, and can never
change during execution

BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 34 / 54

Memory segments

The main data segments of a program are shown below

The STACK segment
contains local variables

Its size is dynamic: it can
grow or shrink, depending
on how many local
variables are in the current
block

BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 34 / 54

Memory segments

The main data segments of a program are shown below

The HEAP segment contains
dynamic memory that is
managed directly by the
programmer

BSS

STACK

HEAP

Global variables

Local variables

Dynamic memory

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 34 / 54

Example

Here is an example:

int a = 5; // initialised global data
int b; // non initialised global data

int f(int i) // i, d and s[] are local variables
{ // will be created on the stack when

double d; // function f() is invoked
char s[] = "Lipari";
...

}

int main()
{

int s, z; // local variables, are created on the stack
// when the program starts

f(); // here f() is invoked, so the stack for f() is created
}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 35 / 54

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 36 / 54

Pointer

A pointer is a variable that can hold a memory address
Basic syntax:

int a = 5;
int b = 7;
int *p;

p = &a;

cout << p << endl;

cout << *p << endl;

*p = 6;

p = &b;

cout << *p << endl;

Declaration of a pointer to an integer vari-
able

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 37 / 54

Pointer

A pointer is a variable that can hold a memory address
Basic syntax:

int a = 5;
int b = 7;
int *p;

p = &a;

cout << p << endl;

cout << *p << endl;

*p = 6;

p = &b;

cout << *p << endl;

Declaration of a pointer to an integer vari-
able

p takes the address of a

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 37 / 54

Pointer

A pointer is a variable that can hold a memory address
Basic syntax:

int a = 5;
int b = 7;
int *p;

p = &a;

cout << p << endl;

cout << *p << endl;

*p = 6;

p = &b;

cout << *p << endl;

Declaration of a pointer to an integer vari-
able

p takes the address of a

print the address

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 37 / 54

Pointer

A pointer is a variable that can hold a memory address
Basic syntax:

int a = 5;
int b = 7;
int *p;

p = &a;

cout << p << endl;

cout << *p << endl;

*p = 6;

p = &b;

cout << *p << endl;

Declaration of a pointer to an integer vari-
able

p takes the address of a

print the address

prints the value in a

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 37 / 54

Pointer

A pointer is a variable that can hold a memory address
Basic syntax:

int a = 5;
int b = 7;
int *p;

p = &a;

cout << p << endl;

cout << *p << endl;

*p = 6;

p = &b;

cout << *p << endl;

Declaration of a pointer to an integer vari-
able

p takes the address of a

print the address

prints the value in a

changes the value in a = 6

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 37 / 54

Pointer

A pointer is a variable that can hold a memory address
Basic syntax:

int a = 5;
int b = 7;
int *p;

p = &a;

cout << p << endl;

cout << *p << endl;

*p = 6;

p = &b;

cout << *p << endl;

Declaration of a pointer to an integer vari-
able

p takes the address of a

print the address

prints the value in a

changes the value in a = 6

now p points to b

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 37 / 54

Pointer

A pointer is a variable that can hold a memory address
Basic syntax:

int a = 5;
int b = 7;
int *p;

p = &a;

cout << p << endl;

cout << *p << endl;

*p = 6;

p = &b;

cout << *p << endl;

Declaration of a pointer to an integer vari-
able

p takes the address of a

print the address

prints the value in a

changes the value in a = 6

now p points to b

prints the value in b

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 37 / 54

Arrays

The name of an array is equivalent to a constant pointer to the first
element
With non-const pointers we can do pointer arithmetic

char name[] = "Giuseppe";

cout << *name << endl;

char *p = name;

p++;

assert(p == name+1);

while (*p != 0)
cout << *(p++);

cout << endl;

prints “G”

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 38 / 54

Arrays

The name of an array is equivalent to a constant pointer to the first
element
With non-const pointers we can do pointer arithmetic

char name[] = "Giuseppe";

cout << *name << endl;

char *p = name;

p++;

assert(p == name+1);

while (*p != 0)
cout << *(p++);

cout << endl;

prints “G”

declares a pointer to the first element of the
array

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 38 / 54

Arrays

The name of an array is equivalent to a constant pointer to the first
element
With non-const pointers we can do pointer arithmetic

char name[] = "Giuseppe";

cout << *name << endl;

char *p = name;

p++;

assert(p == name+1);

while (*p != 0)
cout << *(p++);

cout << endl;

prints “G”

declares a pointer to the first element of the
array

Increments the pointer, now points to “i”

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 38 / 54

Arrays

The name of an array is equivalent to a constant pointer to the first
element
With non-const pointers we can do pointer arithmetic

char name[] = "Giuseppe";

cout << *name << endl;

char *p = name;

p++;

assert(p == name+1);

while (*p != 0)
cout << *(p++);

cout << endl;

prints “G”

declares a pointer to the first element of the
array

Increments the pointer, now points to “i”

this assertion is correct

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 38 / 54

Arrays

The name of an array is equivalent to a constant pointer to the first
element
With non-const pointers we can do pointer arithmetic

char name[] = "Giuseppe";

cout << *name << endl;

char *p = name;

p++;

assert(p == name+1);

while (*p != 0)
cout << *(p++);

cout << endl;

prints “G”

declares a pointer to the first element of the
array

Increments the pointer, now points to “i”

this assertion is correct

zero marks the end of the string

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 38 / 54

Arrays

The name of an array is equivalent to a constant pointer to the first
element
With non-const pointers we can do pointer arithmetic

char name[] = "Giuseppe";

cout << *name << endl;

char *p = name;

p++;

assert(p == name+1);

while (*p != 0)
cout << *(p++);

cout << endl;

prints “G”

declares a pointer to the first element of the
array

Increments the pointer, now points to “i”

this assertion is correct

zero marks the end of the string

prints the content of address pointed by p,
and increments it

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 38 / 54

Dynamic memory

Dynamic memory is managed by the user
In C:

to allocate memory, call function malloc
to deallocate, call free
Both take pointers to any type, so they are not type-safe

In C++
to allocate memory, use operator new
to deallocate, use operator delete
they are more type-safe

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 39 / 54

The new operator

The new and delete operators can be applied to primitive types,
and classes

operator new automatically calculates the size of memory to be
allocated

int *p = new int(5);

class A { ... };

A *q = new A();

delete p;

delete q;

Allocates an integer pointed by p

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 40 / 54

The new operator

The new and delete operators can be applied to primitive types,
and classes

operator new automatically calculates the size of memory to be
allocated

int *p = new int(5);

class A { ... };

A *q = new A();

delete p;

delete q;

Allocates an integer pointed by p

Does two things:
1) Allocates memory for an object of class A
2) calls the constructor of A()

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 40 / 54

The new operator

The new and delete operators can be applied to primitive types,
and classes

operator new automatically calculates the size of memory to be
allocated

int *p = new int(5);

class A { ... };

A *q = new A();

delete p;

delete q;

Allocates an integer pointed by p

Does two things:
1) Allocates memory for an object of class A
2) calls the constructor of A()

Deallocates the memory pointed by p

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 40 / 54

The new operator

The new and delete operators can be applied to primitive types,
and classes

operator new automatically calculates the size of memory to be
allocated

int *p = new int(5);

class A { ... };

A *q = new A();

delete p;

delete q;

Allocates an integer pointed by p

Does two things:
1) Allocates memory for an object of class A
2) calls the constructor of A()

Deallocates the memory pointed by p

Does two things:
1) Calls the destructor for A
2) deallocates the memory pointed by q

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 40 / 54

Destructor

The destructor is called just before the object is deallocated.

It is always called both for all objects (allocated on the stack, in
global memory, or dynamically)

If the programmer does not define a constructor, the compiler
automatically adds one by default (which does nothing)

Syntax

class A {
...

public:
A() { ... } // constructor
~A() { ... } // destructor

};

The destructor never
takes any parameter

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 41 / 54

Example

See ./examples/01.summary-examples/destructor.cpp

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 42 / 54

./examples/01.summary-examples/destructor.cpp

Why a destructor

A destructor is useful when an object allocates memory

so that it can deallocate it when the object is deleted

class A { ... };

class B {
A *p;

public:
B() {

p = new A();
}
~B() {

delete p;
}

};

p is initialised when the
object is created

The memory is
deallocated when the
object is deleted

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 43 / 54

New and delete for arrays

To allocate an array, use this form

int *p = new int[5]; // allocates an array of 5 int
...
delete [] p; // notice the delete syntax

A *q = new A[10]; // allocates an array of 10
... // objects of type A
delete [] q;

In the second case, the default constructor is called to build the 10
objects

Therefore, this can only be done is a default constructor (without
arguments) is available

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 44 / 54

Null pointer

The address 0 is an invalid address
(no data and no function can be located at 0)

therefore, in C/C++ a pointer to 0 is said to be a null pointer, which
means a pointer that points to nothing.

Dereferencing a null pointer is always a bad error (null pointer
exception, or segmentation fault)
In C, the macro NULL is used to mark 0, or a pointer to 0

however, 0 can be seen to be of integer type, or a null pointer

In the new C++, the null pointer is indicated with the constant
nullptr

this constant cannot be automatically converted to an integer

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 45 / 54

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 46 / 54

Function overloading

In C++, the argument list is part of the name of the function
this mysterious sentence means that two functions with the same
name but with different argument list are considered two different
functions and not a mistake

If you look at the internal name used by the compiler for a
function, you will see three parts:

the class name
the function name
the argument list

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 47 / 54

Function overloading

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

__A_f_int

__A_f_int_int

__A_f_double

__B_f_int

To the compiler, they are all different functions!

beware of the type...

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 48 / 54

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 49 / 54

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 49 / 54

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 49 / 54

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

__A_f_double

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 49 / 54

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

__A_f_double

__A_f_int_int

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 49 / 54

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

__A_f_double

__A_f_int_int

__A_f_int_int

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 49 / 54

Return values

Notice that return values are not part of the name
the compiler is not able to distinguish two functions that differs only
on return values

class A {
int floor(double a);
double floor(double a);

};

This causes a compilation error

It is not possible to overload a return value

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 50 / 54

Default arguments in functions

Sometime, functions have long argument lists

Some of these arguments do not change often

We would like to set default values for some argument
This is a little different from overloading, since it is the same
function we are calling!

int f(int a, int b = 0);

f(12); // it is equivalent to f(12,0);

The combination of overloading with default arguments can be
confusing

it is a good idea to avoid overusing both of them

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 51 / 54

Outline

1 Course contents

2 Introduction to C++

3 Classes

4 Access Control

5 Memory layout

6 Pointers

7 Function Overloading

8 Exercise

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 52 / 54

Time to do an example

Let us implement a Stack of integers class

Stack stack;
...
stack.push(12);
stack.push(7);
...
cout << stack.pop();
cout << stack.pop();

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 53 / 54

Interface

class Stack {
...

public:
Stack(int maxsize);
~Stack();

void push(int a);
int pop();
int peek();
int size();

};

Constructor: maxsize is the max-
imum number of elements on the
stack

Hint: Use an array to store the elements

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 54 / 54

Interface

class Stack {
...

public:
Stack(int maxsize);
~Stack();

void push(int a);
int pop();
int peek();
int size();

};

Constructor: maxsize is the max-
imum number of elements on the
stack

Destructor

Hint: Use an array to store the elements

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 54 / 54

Interface

class Stack {
...

public:
Stack(int maxsize);
~Stack();

void push(int a);
int pop();
int peek();
int size();

};

Constructor: maxsize is the max-
imum number of elements on the
stack

Destructor

Returns the top element

Hint: Use an array to store the elements

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 54 / 54

Interface

class Stack {
...

public:
Stack(int maxsize);
~Stack();

void push(int a);
int pop();
int peek();
int size();

};

Constructor: maxsize is the max-
imum number of elements on the
stack

Destructor

Returns the top element

Returns the current number of ele-
ments

Hint: Use an array to store the elements

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2012 54 / 54

	Course contents
	Introduction to C++
	Classes
	Access Control
	Memory layout
	Pointers
	Function Overloading
	Exercise

