
Object Oriented Software Design II
C++ intro

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

February 26, 2012

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 1 / 42

http://retis.sssup.it/~lipari

Outline

1 Pointers

2 References

3 Copy constructor

4 Static

5 Constants

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 2 / 42

Outline

1 Pointers

2 References

3 Copy constructor

4 Static

5 Constants

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 3 / 42

Pointers

We can define a pointer to an object

class A { ... };

A myobj;
A *p = &myobj;

Pointer p contains the address of
myobj

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 4 / 42

Pointers

We can define a pointer to an object

class A { ... };

A myobj;
A *p = &myobj;

Pointer p contains the address of
myobj

As in C, in C++ pointers can be used to pass arguments to
functions

void fun(int a, int *p)
{
a = 5;

*p = 7;
}
...
int x = 0, y = 0;
fun(x, &y);

x is passed by value (i.e. it is copied
into a), so this assignment only modi-
fies the copy

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 4 / 42

Pointers

We can define a pointer to an object

class A { ... };

A myobj;
A *p = &myobj;

Pointer p contains the address of
myobj

As in C, in C++ pointers can be used to pass arguments to
functions

void fun(int a, int *p)
{
a = 5;

*p = 7;
}
...
int x = 0, y = 0;
fun(x, &y);

x is passed by value (i.e. it is copied
into a), so this assignment only modi-
fies the copy

y is passed by address (i.e. we pass
its address, so that it can be modified
inside the function)

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 4 / 42

Pointers

We can define a pointer to an object

class A { ... };

A myobj;
A *p = &myobj;

Pointer p contains the address of
myobj

As in C, in C++ pointers can be used to pass arguments to
functions

void fun(int a, int *p)
{
a = 5;

*p = 7;
}
...
int x = 0, y = 0;
fun(x, &y);

x is passed by value (i.e. it is copied
into a), so this assignment only modi-
fies the copy

y is passed by address (i.e. we pass
its address, so that it can be modified
inside the function)

After the function call, x=0, y=7

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 4 / 42

Another example
pointerarg.cpp

class MyClass {
int a;

public:
MyClass(int i) { a = i; }
void fun(int y) { a = y; }
int get() { return a; }

};

void g(MyClass c) {
c.fun(5);

}

void h(MyClass *p) {
p->fun(5);

}

int main() {
MyClass obj(0);

cout << "Before calling g: obj.get() = " << obj.get() << endl;
g(obj);
cout << "After calling g: obj.get() = " << obj.get() << endl;
h(&obj);
cout << "After calling h: obj.get() = " << obj.get() << endl;

}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 5 / 42

./examples/02.basics-examples/pointerarg.cpp

What happened

Function g() takes an object, and makes a copy
c is a copy of obj
g() has no side effects, as it works on the copy

Function h() takes a pointer to the object
it works on the original object obj, changing its internal value

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 6 / 42

More on pointers

It is also possible to define pointers to functions:
The portion of memory where the code of a function resides has an
address; we can define a pointer to this address

void (*funcPtr)(); // pointer to void f();
int (*anotherPtr)(int) // pointer to int f(int a);

void f(){...}

funcPtr = &f(); // now funcPtr points to f()
funcPtr = f; // equivalent syntax

(*funcPtr)(); // call the function

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 7 / 42

Pointers to functions – II

To simplify notation, it is possible to use typedef:

typedef void (*MYFUNC)();
typedef void* (*PTHREADFUN)(void *);

void f() { ... }
void *mythread(void *) { ... }

MYFUNC funcPtr = f;
PTHREADFUN pt = mythread;

It is also possible to define arrays of function pointers:

void f1(int a) {}
void f2(int a) {}
void f3(int a) {}
...
void (*funcTable []) (int) = {f1, f2, f3};
...
for (int i =0; i<3; ++i) (*funcTable[i])(i + 5);

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 8 / 42

Field dereferencing

When we have to use a member inside a function through a
pointer

class Data {
public:
int x;
int y;

};

Data aa; // object
Data *pa = &aa; // pointer to object
pa->x; // select a field
(*pa).y; // " "

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 9 / 42

Outline

1 Pointers

2 References

3 Copy constructor

4 Static

5 Constants

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 10 / 42

References

In C++ it is possible to define a reference to a variable or to an
object

int x; // variable
int &rx = x; // reference to variable

MyClass obj; // object
MyClass &r = obj; // reference to object

r is a reference to object obj
WARNING!
C++ uses the same symbol & for two different meanings!
Remember:

when used in a declaration/definition, it is a reference
when used in an instruction, it indicates the address of a variable in
memory

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 11 / 42

References vs pointers

There is quite a difference between references and pointers

MyClass obj; // the object
MyClass &r = obj; // a reference
MyClass *p; // a pointer
p = &obj; // p takes the address of obj

obj.fun(); // call method fun()
r.fun(); // call the same method by reference
p->fun(); // call the same method by pointer

MyClass obj2; // another object
p = & obj2; // p now points to obj2
r = obj2; // compilation error! Cannot change a reference!
MyClass &r2; // compilation error! Reference must be initialized

Once you define a reference to an object, the same reference
cannot refer to another object later!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 12 / 42

Reference vs pointer

In C++, a reference is an alternative name for an object

Pointers

Pointers are like other
variables

Can have a pointer to
void

Can be assigned
arbitrary values

It is possible to do
arithmetic

What are references good for?

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 13 / 42

Reference vs pointer

In C++, a reference is an alternative name for an object

Pointers

Pointers are like other
variables

Can have a pointer to
void

Can be assigned
arbitrary values

It is possible to do
arithmetic

References

Must be initialised

Cannot have
references to void

Cannot be assigned

Cannot do arithmetic

What are references good for?

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 13 / 42

Reference example
referencearg.cpp

class MyClass {
int a;

public:
MyClass(int i) { a = i; }
void fun(int y) { a = y; }
int get() { return a; }

};

void g(MyClass c) {
c.fun(5);

}

void h(MyClass &c) {
c.fun(5);

}

int main() {
MyClass obj(0);

cout << "Before calling g: obj.get() = " << obj.get() << endl;
g(obj);
cout << "After calling g: obj.get() = " << obj.get() << endl;
h(obj);
cout << "After calling h: obj.get() = " << obj.get() << endl;

}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 14 / 42

./examples/02.basics-examples/referencearg.cpp

Differences

Notice the differences:
Method declaration: void h(MyClass &c); instead of void
h(MyClass *p);
Method call: h(obj); instead of h(&obj);
In the first case, we are passing a reference to an object
In the second case, the address of an object

References are much less powerful than pointers
However, they are much safer than pointers

The programmer cannot accidentally misuse references, whereas it
is easy to misuse pointers

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 15 / 42

Outline

1 Pointers

2 References

3 Copy constructor

4 Static

5 Constants

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 16 / 42

Copying objects

In the previous example, function g() is taking a object by value

void g(MyClass c) {...}
...
g(obj);

The original object is copied into parameter c

The copy is done by invoking the copy constructor

MyClass(const MyClass &r);

If the user does not define it, the compiler will define a default one
for us automatically

The default copy constructor just performs a bitwise copy of all
members
Remember: this is not a deep copy!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 17 / 42

Example

Let’s add a copy constructor to MyClass, to see when it is called

./examples/02.basics-examples/copy1.cpp

Now look at the output
The copy constructor is automatically called when we call g()
It is not called when we call h()

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 18 / 42

./examples/02.basics-examples/copy1.cpp

Usage

The copy constructor is called every time we initialise a new object
to be equal to an existing object

MyClass ob1(2); // call constructor
MyClass ob2(ob1); // call copy constructor
MyClass ob3 = ob2; // call copy constructor

We can prevent a copy by making the copy constructor private:

// can’t be copied!
class MyClass {

MyClass(const MyClass &r);
public:

...
};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 19 / 42

Const references

Let’s analyse the argument of the copy constructor

MyClass(const MyClass &r);

The const means:
This function accepts a reference
however, the object will not be modified: it is constant
the compiler checks that the object is not modified by checking the
constness of the methods
As a matter of fact, the copy constructor does not modify the
original object: it only reads its internal values in order to copy them
into the new object
If the programmer by mistake tries to modify a field of the original
object, the compiler will give an error

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 20 / 42

Outline

1 Pointers

2 References

3 Copy constructor

4 Static

5 Constants

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 21 / 42

Meaning of static

In C/C++ static has several meanings
for global variables, it means that the variable is not exported in the
global symbol table to the linker, and cannot be used in other
compilation units
for local variables, it means that the variable is not allocated on the
stack: therefore, its value is maintained through different function
instances
for class data members, it means that there is only one instance of
the member across all objects
a static function member can only act on static data members of the
class

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 22 / 42

Static members

We would like to implement a counter that keeps track of the
number of objects that are around

we can use a static variable

class ManyObj {
static int count;
int index;

public:
ManyObj();
~ManyObj();

int getIndex();
static int howMany();

};

int ManyObj::count = 0;

ManyObj::ManyObj() {
index = count++;

}
ManyObj::~ManyObj() {

count--;
}
int ManyObj::getIndex() {

return index;
}
int ManyObj::howMany() {

return count;
}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 23 / 42

Static members

int main()
{

ManyObj a, b, c, d;
ManyObj *p = new ManyObj;
ManyObj *p2 = 0;
cout << "Index of p: " << p->getIndex() << "\n";
{

ManyObj a, b, c, d;
p2 = new ManyObj;
cout << "Number of objs: " << ManyObj::howMany() << "\n";

}
cout << "Number of objs: " << ManyObj::howMany() << "\n";
delete p2; delete p;
cout << "Number of objs: " << ManyObj::howMany() << "\n";

}

Index of p: 4
Number of objs: 10
Number of objs: 6
Number of objs: 4

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 24 / 42

Static members

There is only one copy of the static variable for all the objects

All the objects refer to this variable
How to initialize a static member?

cannot be initialized in the class declaration
the compiler does not allocate space for the static member until it is
initiliazed
So, the programmer of the class must define and initialize the static
variable

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 25 / 42

Static data members

Static data members need to be initialized when the program
starts, before the main is invoked

they can be seen as global initialized variables (and this is how they
are implemented)

This is an example

// include file A.hpp
class A {
static int i;

public:
A();
int get();

};

// src file A.cpp
#include "A.hpp"

int A::i = 0;

A::A() {...}
int A::get() {...}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 26 / 42

Initialization

It is usually done in the .cpp file where the class is implemented

int ManyObj::count = 0;

ManyObj::ManyObj() { index = count++;}
ManyObj::~ManyObj() {count--;}
int ManyObj::getIndex() {return index;}
int ManyObj::howMany() {return count;}

There is a famous problem with static members, known as the
static initialization order failure

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 27 / 42

The static initialization fiasco

When static members are complex objects, that depend on each
other, we have to be careful with the order of initialization

initialization is performed just after the loading, and before the main
starts.
Within a specific translation unit, the order of initialization of static
objects is guaranteed to be the order in which the object definitions
appear in that translation unit. The order of destruction is
guaranteed to be the reverse of the order of initialization.
However, there is no guarantee concerning the order of initialization
of static objects across translation units, and the language provides
no way to specify this order. (undefined in C++ standard)
If a static object of class A depends on a static object of class B, we
have to make sure that the second object is initialized before the
first one

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 28 / 42

Solutions

The Nifty counter (or Schwartz counter) technique
Used in the standard library, quite complex as it requires an extra
class that takes care of the initialization

The Construction on first use technique
Much simpler, use the initialization inside function

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 29 / 42

Construction on first use

It takes advantage of the following C/C++ property
Static objects inside functions are only initialized on the first call

Therefore, the idea is to declare the static objects inside global
functions that return references to the objects themselves

access to the static objects happens only through those global
functions (see Singleton)

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 30 / 42

Copy constructors and static members

What happens if the copy constructor is called?

void func(ManyObj a)
{

...
}

void main()
{

ManyObj a;
func(a);
cout << "How many: " << ManyObj::howMany() << "\n";

}

What is the output?

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 31 / 42

Copy constructors and static members

What happens if the copy constructor is called?

void func(ManyObj a)
{

...
}

void main()
{

ManyObj a;
func(a);
cout << "How many: " << ManyObj::howMany() << "\n";

}

What is the output?

Solution in
./examples/02.basics-examples/manyobj.cpp

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 31 / 42

./examples/02.basics-examples/manyobj.cpp

Outline

1 Pointers

2 References

3 Copy constructor

4 Static

5 Constants

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 32 / 42

Constants

In C++, when something is const it means that it cannot change.
Period.
Now, the particular meanings of const are a lot:

Don’t to get lost! Keep in mind: const = cannot change

Another thing to remember:
constants must have an initial (and final) value!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 33 / 42

Constants - I

As a first use, const can substitute the use of #define in C
whenever you need a constant global value, use const instead of a
define, because it is clean and it is type-safe

#define PI 3.14 // C style
const double pi = 3.14; // C++ style

In this case, the compiler does not allocate storage for pi

In any case, the const object has an internal linkage

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 34 / 42

Constants - II

You can use const for variables that never change after
initialization. However, their initial value is decided at run-time

const int i = 100;
const int j = i + 10;

int main()
{

cout << "Type a character\n";
const char c = cin.get();
const char c2 = c + ’a’;
cout << c2;

c2++;
}

Compile-time constants

run-time constants

ERROR! c2 is const!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 35 / 42

Constant pointers

There are two possibilities
the pointer itself is constant
the pointed object is constant

int a
int * const u = &a;

const int *v;

the pointer is constant

the pointed object is constant (the pointer
can change and point to another const int!)

Remember: a const object needs an initial value!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 36 / 42

Const function arguments

An argument can be declared constant. It means the function
can’t change it

it’s particularly useful with references

class A {
public:

int i;
};

void f(const A &a) {
a.i++; // error! cannot modify a;

}

You can do the same thing with a pointer to a constant, but the
syntax is messy.

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 37 / 42

Passing by const reference

Remember:
we can pass argument by value, by pointer or by reference
in the last two cases we can declare the pointer or the reference to
refer to a constant object: it means the function cannot change it
Passing by constant reference is equivalent, from the user point of
view, to passing by value
From an implementation point of view, passing by const reference is
much faster!!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 38 / 42

Constant member functions

A member function can be declared constant

It means that it will not modify the object

class A {
int i;

public:
int f() const;
void g();

};
void A::f() const
{

i++; // ERROR! this function cannot
// modify the object

return i; // Ok
}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 39 / 42

Constant member functions II

The compiler can call only const member functions on a const
object!

const A a = ...;

a.f(); // Ok
a.g(); // ERROR!!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 40 / 42

Constant return value

This is tricky! We want to say: “the object we are returning from
this function cannot be modified”

This is meaningless when returning predefined types

const int f1(int a) {return ++a;}

int f2(int a) {return ++a;}

int i = f1(5); // legal
i = f2(5);

const int j = f1(5); // also legal
const int k = f2(5); //also legal

these two functions are
equivalent!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 41 / 42

Return mechanism

When returning a value, the compiler copies it into an appropriate
location, where the caller can use it

int f2(int a)
{

return ++a;
}

int i = f2(5);

1 a is allocated on the stack
2 the compiler copies 5 into a
3 a is incremented
4 the modified value of a is

then copied directly into i
5 a is de-allocated

(de-structed)

why const does not matter?
since the compiler copies the value into the new location, who
cares if the original return value is constant? It is deallocated right
after the copy!

For objects, it is much more complex... (next lecture)

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 26, 2012 42 / 42

	Pointers
	References
	Copy constructor
	Static
	Constants

