
Object Oriented Software Design II
Inheritance

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

February 29, 2012

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 1 / 32

Outline

1 Inheritance

2 Virtual functions

3 Virtual Destructors

4 Pure virtual functions

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 2 / 32

http://retis.sssup.it/~lipari

Code reuse

In C++ (like in all OO programming), one of the goals is to re-use
existing code
There are two ways of accomplishing this goal: composition and
inheritance

Composition consists defining the object to reuse inside the new
object
Composition can also expressed by relating different objects with
pointers each other
Inheritance consists in enhancing an existing class with new more
specific code

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 4 / 32

Inheritance

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 5 / 32

Syntax

How to define the derived class

class B : public A {
int i;

public:
B() : A(),

i(0)
{}
~B() {}
void set(int a) {

j = a;
i+= j;

}
int g() const {

return i;
}

};

class B derives publicly from A

Therefore, to construct B, we must
first construct A

j is a member of A declared as
protected; therefore, B can ac-
cess it

i instead is a member of B. There if
another i that is a private mem-
ber of A, so it cannot be accessed
from B

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 6 / 32

Use of Inheritance

Now we can use B as a special version of A

int main()
{

B b;
cout << b.get() << endl; // calls A::get();
b.set(10);
cout << b.g() << endl;
b.g();
A *a = &b; // Automatic type conversion (upcasting)
a->f();
B *p = new A; // error!

}

See
./examples/04.inheritance-examples/example1.cpp

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 7 / 32

./examples/04.inheritance-examples/example1.cpp

Public inheritance

Public inheritance means that the derived class inherits the same
interface of the base class

All members in the public part of A are also part of the public
part of B
All members in the protected part of A are part of the
protected part of B
All members in the private part of A are not accessible from B.

This means that if we have an object of type B, we can use all
functions defined in the public part of B and all functions
defined in the public part of A.

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 8 / 32

Overloading and hiding

There is no overloading across classes

class A {
...

public:
int f(int, double);

}

class B : public A {
...

public:
void f(double);

}

int main()
{

B b;
b.f(2,3.0);

// ERROR!
}

A::f() has been hidden
by B::f()

to get A::f() into scope,
the using directive is
necessary

using A::f(int,
double);

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 9 / 32

Upcasting

It is possible to use an object of the derived class through a
pointer to the base class.

class A {
public:

void f() { ... }
};
class B : public A {
public:

void g() { ... }
};

A* p;

p = new B();

p->f();

p->g();

A pointer to the base class

The pointer now points to an object
of a derived class

Call a function of the interface of
the base class: correct

Error! g() is not in the interface
of the base class, so it cannot be
called through a pointer to the base
class!

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 10 / 32

References

Same thing is possible with references

class A {
public:

void f() { ... }
};
class B : public A {
public:

void g() { ... }
};

void h(A &)
{

h.f();
h.g();

}

B obj;

h(obj);

Function h takes a reference to the
base class

Of course, it is possible to call functions
in the interface of the base class

This is an error! g() is not in the in-
terface of A

Calling the function by passing a ref-
erence to an object of a derived class:
correct.

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 11 / 32

Extension through inheritance

Why this is useful?
All functions that take a reference (or a pointer) to A as a parameter,
continue to be valid and work correctly when we pass a reference
(or a pointer) to B
This means that we can reuse all code that has been written for A,
also for B
In addition, we can write additional code specifically for B

Therefore,
we can reuse existing code also with the new class
We can extend existing class to implement new functionality

What about modifying (customize, extend, etc.) the behaviour of
existing code without changing it?

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 12 / 32

Virtual functions

Let’s introduce virtual functions with an example

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 14 / 32

Implementation

class Shape {
protected:

double x,y;
public:

Shape(double x1, double y2);
virtual void draw() = 0;

};

class Circle : public Shape {
double r;

public:
Circle(double x1, double y1,

double r);
virtual void draw();

};

class Rect : public Shape {
double a, b;

public:
Rect(double x1, double y1,

double a1, double b1);
virtual void draw();

};

class Triangle : public Shape {
double a, b;

public:
Triangle(double x1, double y1,

double a1, double b1);
virtual void draw();

};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 15 / 32

We would like to collect shapes

Let’s make an array of shapes

Shapes * shapes[3];

shapes[0] = new Circle(2,3,10);
shapes[1] = new Rect(10,10,5,4);
shapes[2] = new Triangle(0,0,3,2);

// now we want to draw all the shapes ...

for (int i=0; i<3; ++i) shapes[i]->draw();

We would like that the right draw function is called

However, the problem is that Shapes::draw() is called

The solution is to make draw virtual

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 16 / 32

Virtual functions

class Shape {
protected:

double x,y;
public:

Shape(double xx, double yy);
void move(double x, double y);
virtual void draw();
virtual void resize(double scale);
virtual void rotate(double degree);

};

class Circle : public Shape {
double r;

public:
Circle(double x, double y,

double r);
void draw();
void resize(double scale);
void rotate(double degree);

};

move() is a regular
function

draw(), resize()
and rotate() are
virtual

see shapes/

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 17 / 32

Virtual table

When you put the virtual keyword before a function declaration,
the compiler builds a vtable for each class

Circle – vptr

Rect – vptr

Triangle – vptr

void draw()

void resize()

void rotate()

void draw()

void resize()

void rotate()

void draw()

void resize()

void rotate()

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 18 / 32

Calling a virtual function

When the compiler sees a call to a virtual function, it performs a
late binding, or dynamic binding

each object of a class derived from Shape has a vptr as first
element.

It is like a hidden member variable

The virtual function call is translated into
get the vptr (first element of object)
move to the right position into the vtable (depending on which
virtual function we are calling)
call the function

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 19 / 32

Dynamic binding vs static binding

Which function are called in the following code?

class A {
public:

void f() { cout << "A::f()" << endl; g(); }
virtual void g() { cout << "A::g()" << endl; }

};
class B : public A {
public:

void f() { cout << "B::f()" << endl; g(); }
virtual void g() { cout << "B::g()" << endl; }

};
...

A *p = new B;
p->g();
p->f();

B b;
A &r = b;
r.g();
r.f();

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 20 / 32

Overloading and overriding

When you override a virtual function, you cannot change the
return value

Simply because the compiler will not know which function to
actually call

There is only one exception to the previous rule:

if the base class virtual method returns a pointer or a reference to
an object of the base class . . .
. . . the derived class can change the return value to a pointer or
reference of the derived class

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 21 / 32

Overload and override

Examples

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

Wrong

class A {
public:

virtual A& f();
};

class C: public A {
public:

virtual int f();
};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 22 / 32

Overloading and overriding

When you override a virtual function, you cannot change the
return value

Simply because the compiler will not know which function to
actually call

There is only one exception to the previous rule:

if the base class virtual method returns a pointer or a reference to
an object of the base class . . .
. . . the derived class can change the return value to a pointer or
reference of the derived class

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 23 / 32

Overload and override

Examples

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

Wrong

class A {
public:

virtual A& f();
};

class C: public A {
public:

virtual int f();
};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 24 / 32

Destructors

What happens if we try to destruct an object through a pointer to
the base class?

class A {
public:

A();
~A();

};

class B : public A {
public:

B();
~B();

};

int main() {
A *p;
p = new B;
// ...
delete p;

}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 26 / 32

Virtual destructor

This is a big mistake!
The destructor of the base class is called, which “destroys” only
part of the object
You will soon end up with a segmentation fault (or illegal access), or
memory corruption

To solve the problem, we have to declare a virtual destructor
If the destructors are virtual, they are called in the correct order

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 27 / 32

Restrictions

Never call a virtual function inside a destructor!
Can you explain why?

You can not call a virtual function inside a constructor
in fact, in the constructor, the object is only half-built, so you could
end up making a wrong thing
during construction, the object is not yet ready! The constructor
should only build the object

Same thing for the destructor
during destruction, the object is half destroyed, so you will probably
call the wrong function

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 28 / 32

Restrictions

Example

class Base {
string name;

public:
Base(const string &n) : name(n) {}
virtual string getName() { return name; }
virtual ~Base() { cout << getName() << endl;}

};

class Derived : public Base {
string name2;

public:
Derived(const string &n) : Base(n), name(n + "2") {}
virtual string getName() {return name2;}
virtual ~Derived() {}

};

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 29 / 32

Pure virtual functions

A virtual function is pure if no implementation is provided

Example:

class Abs {
public:
virtual int fun() = 0;
virtual ~Abs();

};
class Derived public Abs {
public:
Derived();
virtual int fun();
virtual ~Derived();

};

This is a pure virtual function. No
object of Abs can be instantiated.

One of the derived classes must fi-
nalize the function to be able to in-
stantiate the object.

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 31 / 32

Interface classes

If a class only provides pure virtual functions, it is an interface
class

an interface class is useful when we want to specify that a certain
class conforms to an interface
Unlike Java, there is no special keyword to indicate an interface
class
more examples in section multiple inheritance

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 32 / 32

	Inheritance
	Virtual functions
	Virtual Destructors
	Pure virtual functions

