Object Oriented Software Design Il

Inheritance

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

February 29, 2012

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 1/32

@ Inheritance
e Virtual functions
9 Virtual Destructors

@ Pure virtual functions

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 2/32

http://retis.sssup.it/~lipari

Code reuse

@ In C++ (like in all OO programming), one of the goals is to re-use
existing code

@ There are two ways of accomplishing this goal: composition and
inheritance

@ Composition consists defining the object to reuse inside the new
object

@ Composition can also expressed by relating different objects with
pointers each other

@ Inheritance consists in enhancing an existing class with new more
specific code

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 4/32

Inheritance
class A {
int i;
A pr ot ect ed:
— int j;
- 1oint publ i c:
j:int A(A%):{i}(o),j(o) {}:
+ get() :int int get() const {return i;}
+ f() : ushort int f() const {return j;}
b
class B : public A {
B int i;
- iint public:
_ B() : A(), i(0) {};
+ set() : int ~B() {};
+ g() :int void set(int a) {j] =a; i+=]}
int g() const {return i;}
B 5

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012

@ How to define the derived class

class B : public A { —

O class B derives publicly from A |
publ i c:

BO) : AQ), Therefore, to construct B, we must

0 i (0) first construct A

~B() {}

]

void set(int a) {
i = a / prot ect ed; therefore, B can ac-

is a member of A declared as‘

i+= cess it
i} nt g() cons(:\\ i instea(_j isa member_ of B. There if
return i: another i thgt isaprivat e mem-
} ber of A, so it cannot be accessed
}: from B

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 6/32

Use of Inheritance

@ Now we can use B as a special version of A

int main()

{
B b;
cout << b.get() << endl; // calls A :get();
b. set (10);
cout << b.g() << endl;
b.g();
A xa = &b; // Automatic type conversion (upcasting)
a->f();
B*p =newA, // error!

}

@ See

.l exanpl es/ 04. i nheritance- exanpl es/ exanpl el. cpp

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 7132

./examples/04.inheritance-examples/example1.cpp

Public inheritance

@ Public inheritance means that the derived class inherits the same
interface of the base class
@ All members in the publ i ¢ part of A are also part of the publ i c
part of B
@ All members in the pr ot ect ed part of A are part of the
pr ot ect ed part of B
@ All members in the private part of A are not accessible from B.

@ This means that if we have an object of type B, we can use all
functions defined in the publ i ¢ part of B and all functions
defined in the publ i ¢ part of A.

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 8/32

Overloading and hiding

@ There is no overloading across classes

class A { i nt mai n()
{
public: B b;
int f(int, double); b.f(2,3.0);
} /| ERROR!
}

class B : public A {
@ A : f() has been hidden

ubl i c:

i voi d f(doubl e): by B: : ()

} @ toget A : () into scope,
the usi ng directive is
necessary

@ using A :f(int,
doubl e) ;

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 9/32

@ It is possible to use an object of the derived class through a

pointer to the base class.

class A {
publi c:

void f() { ... }
b
class B : public A {
publi c:
} void g() { }

A pointer to the base class |

The pointer now points to an object
of a derived class

the base class: correct

Error! g() is not in the interface
of the base class, so it cannot be
called through a pointer to the base
class!

TR

Call a function of the interface of|

C++ Intro

10/32

G. Lipari (Scuola Superiore Sant’Anna)

References

@ Same thing is possible with references

class A {

publ i c:
void f() { ... }

I s

class B :

public:
void g() {

public A {

}

b
void h(A &)
{
h.f(); /
h.g();
}
B obj;

h(obj) ;

C++ Intro

February 29, 2012

Function h takes a reference to the
base class

Of course, it is possible to call functions
in the interface of the base class

terface of A

Calling the function by passing a ref-
erence to an object of a derived class:

This is an error! g() is not in the in- |
correct. ‘

11/32

G. Lipari (Scuola Superiore Sant’Anna)

February 29, 2012

Extension through inheritance

@ Why this is useful?

@ All functions that take a reference (or a pointer) to A as a parameter,
continue to be valid and work correctly when we pass a reference
(or a pointer) to B

@ This means that we can reuse all code that has been written for A,
also for B

@ In addition, we can write additional code specifically for B

@ Therefore,
@ we can reuse existing code also with the new class
@ We can extend existing class to implement new functionality

@ What about modifying (customize, extend, etc.) the behaviour of
existing code without changing it?

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 12 /32

Virtual functions

@ Let's introduce virtual functions with an example

Shape

#x: double
#y: double
+draw(): void

A

Circle Rect Triangle

-r: double -a: double -a: double
+draw(): void -b: double -b: double
+draw(): void +draw(): void

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 14 /32

Implementation

cl ass Shape { cl ass Rect publ i c Shape {

pr ot ect ed: doubl e a, b;
doubl e x,y; public:

public: Rect (doubl e x1, double y1,
Shape(doubl e x1, double y2); doubl e al, double bl);
virtual void draw() = O; virtual void draw);

b b

class Circle : public Shape { class Triangle : public Shape {
doubl e r; doubl e a, b;

publi c: publi c:
Crcle(doubl e x1, double y1, Triangl e(doubl e x1, double y1,

doubl e r); doubl e al, double bl);

virtual void draw); virtual void draw);

b b

C++ Intro 15/ 32

G. Lipari (Scuola Superiore Sant’Anna)

We would like to collect shapes

@ Let’'s make an array of shapes

February 29, 2012

Shapes * shapes|[3];

shapes[0] = new Circle(2,3, 10);
shapes[1] = new Rect (10, 10,5, 4);
shapes[2] = new Triangle(0,O0,3,2);

/'l now we want to draw all the shapes ..

for (int i=0; i<3; ++i) shapes[i]->draw);

@ We would like that the right draw function is called
@ However, the problem is that Shapes::draw() is called
@ The solution is to make draw virtual

C++ Intro 16 /32

G. Lipari (Scuola Superiore Sant’Anna)

February 29, 2012

Virtual functions

cl ass Shape { @ nove() is aregular
pr ot ect ed: function
doubl e x,y;
publ i c: @ draw(),resize()
Shape(doubl e xx, doubl e yy);
voi d nove(doubl e x, double y); a_nd rotat e() are
virtual void draw); virtual
virtual void resize(double scale);
virtual void rotate(doubl e degree); @ see ShapeS/
b
class Circle : public Shape {
doubl e r;
publi c:
Circl e(doubl e x, double vy,
doubl e r);
void draw);
voi d resi ze(doubl e scal e);
voi d rotat e(doubl e degree);
b

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 17 /32

Virtual table

@ When you put the virtual keyword before a function declaration,
the compiler builds a vtable for each class

/—>void draw()
Circle — vptr— void resize()

void rotate()

/—>void draw()
Rect — vptr— void resize()

void rotate()

_/—>void draw()
Triangle — vptr- void resize()

void rotate()

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 18 /32

Calling a virtual function

@ When the compiler sees a call to a virtual function, it performs a
late binding, or dynamic binding

@ each object of a class derived from Shape has a vpt r as first
element.

@ ltis like a hidden member variable
@ The virtual function call is translated into

@ getthe vptr (first element of object)

@ move to the right position into the vtable (depending on which
virtual function we are calling)

o call the function

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 19/32

Dynamic binding vs static binding

Which function are called in the following code?

class A {

publi c:
void f() { cout << "Ar:f()" << endl; g(); }
virtual void g() { cout << "Ar:g()" << endl; }

Ji i

class B : public A {

publi c:
void f() { cout << "B::f()" << endl; g(); }
virtual void g() { cout << "B::g()" << endl; }

A *p = new B;
p->9();
p->f();

,:b;
)
)

ST >w
2l e

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 20/32

Overloading and overriding

@ When you override a virtual function, you cannot change the
return value

@ Simply because the compiler will not know which function to
actually call

@ There is only one exception to the previous rule:

o if the base class virtual method returns a pointer or a reference to
an object of the base class ...

@ ...the derived class can change the return value to a pointer or
reference of the derived class

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 21/32

int g();
s

class B: public A {
public:
virtual B& f();
doubl e g();

H

class C public A {
publi c:
virtual int f();

H

Overload and override
@ Examples
Correct Wrong
class A { class A {
publi c: publi c:
virtual A& f(); virtual A& f();

G. Lipari (Scuola Superiore Sant’Anna)

C++ Intro

February 29, 2012

Overloading and overriding

@ When you override a virtual function, you cannot change the
return value

@ Simply because the compiler will not know which function to
actually call

@ There is only one exception to the previous rule:

o if the base class virtual method returns a pointer or a reference to
an object of the base class ...

@ ...the derived class can change the return value to a pointer or
reference of the derived class

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 23 /32

Overload and override
@ Examples
Correct Wrong
class A { class A {
publi c: publi c:
virtual A& f(); virtual A& f();
int g(); i
}
class C. public A {
class B: public A { publi c:
publi c: virtual int f();
virtual B& f(); }i
doubl e g();
}s

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012

@ What happens if we try to destruct an object through a pointer to
the base class?

class A {
public:
A();
~A() ;
)i

class B : public A {
publi c:
B();
~B() ;
};

int main() {
A *p;

p = new B;
...

del ete p;

}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 26 /32

Virtual destructor

@ This is a big mistake!

@ The destructor of the base class is called, which “destroys” only
part of the object
@ You will soon end up with a segmentation fault (or illegal access), or
memory corruption
@ To solve the problem, we have to declare a virtual destructor

o If the destructors are virtual, they are called in the correct order

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 27132

Restrictions

@ Never call a virtual function inside a destructor!
@ Can you explain why?
@ You can not call a virtual function inside a constructor

@ in fact, in the constructor, the object is only half-built, so you could
end up making a wrong thing

@ during construction, the object is not yet ready! The constructor
should only build the object

@ Same thing for the destructor

@ during destruction, the object is half destroyed, so you will probably
call the wrong function

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 28 /32

@ Example

cl ass Base {
string nane;
publi c:
Base(const string &) : name(n) {}
virtual string getNane() { return name; }
virtual ~Base() { cout << getNane() << endl;}

H

cl ass Derived : public Base {
string nane2,
publi c:
Derived(const string &) : Base(n), name(n + "2") {}
virtual string getNane() {return nane2;}
virtual ~Derived() {}

H

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 29/32

Pure virtual functions

@ A virtual function is pure if no implementation is provided

@ Example:

cl ass Abs {

publi c: = : .
virtual int fun() = O; L1 Th_|s is a pure V|rtual_funct|qn. No
virtual ~Abs(); object of Abs can be instantiated.

b

cl ass Derived public Abs {

publiics One of the derived classes must fi-
Derived(); . // nalize the function to be able to in-
LIRS Sl 1 e fun() ’ stantiate the object.
virtual ~Derived();

b

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 31/32

Interface classes

@ If a class only provides pure virtual functions, it is an interface
class

@ an interface class is useful when we want to specify that a certain
class conforms to an interface

@ Unlike Java, there is no special keyword to indicate an interface
class

@ more examples in section multiple inheritance

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 29, 2012 32/32

	Inheritance
	Virtual functions
	Virtual Destructors
	Pure virtual functions

