Object Oriented Software Design - II

Dynamic casting, Slicing, Private Inheritance, Multiple Inheritance

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

March 5, 2012

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 1/37

http://retis.sssup.it/~lipari

@ Downcasting

© siicing

9 Private and protected inheritance
@ Multiple inheritance

a Pointers to members

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 2/37

@ Downcasting

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 3/37

When inheritance is used

@ Inheritance should be used when we have a isA relation between
objects
@ you can say that a circle is a kind of shape
@ you can say that a rect is a shape
@ What if the derived class contains some special function that is
useful only for that class?
@ Suppose that we need to compute the diagonal of a rectangle

March 5, 2012 4/37

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance

iISA vs. isLikeA

@ If we put function di agonal () only in Rect , we cannot call it with
a pointer to shape
@ In fact, di agonal () is not part of the interface of shape
@ If we put function di agonal () in Shape, it is inherited by
TriangleandCircle
@ di agonal () does not make sense fora Circl e
@ we should raise an error when di agonal () iscalledonaCircl e
@ One solution is to put the function in the Shape interface
@ it will return an error for the other classes, like Tri angl e and
Crcle

@ another solution is to put it only in Rect and then make a
downcasting when necessary
@ see
.l exanpl es/ 05. nul ti pl e-i nheritance- exanpl es/ shapes_
for the two solutions

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 5/37

./examples/05.multiple-inheritance-examples/shapes_main.cpp

@ One way to downcast is to use the dynam c_cast construct

class Shape { ... };
class Circle : public Shape { ... };
voi d f(Shape *s)
{
Circle *c;
¢ = dynamic_cast<Circle *>(s);
if (c ==0) {
/! s does not point to a circle
}
el se {
/! s (and c) points to a circle
}
}

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 6/37

@ The dynam c_cast () is solved at run-time, by looking inside the
structure of the object

@ This feature is called run-time type identification (RTTI)
@ In some compiler, it can be disabled at compile time

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 7137

@ Traditional explicit type-casting allows to convert any pointer into
any other pointer type, independently of the types they point to.

@ The subsequent call to member result will produce either a
run-time error or a unexpected result.

@ There are more safe way to perform casting:

dynanmi c_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const _cast <new_type> (expression)

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012

@ dynam c_cast can be used only with pointers and references to
objects.

@ Its purpose is to ensure that the result of the type conversion is a
valid complete object of the requested class.

@ The result is the pointer itself if the conversion is possible;

@ The resultis nul | pt r if the conversion is not possible:

class CBase { virtual void dummy() {} };
class CDerived: public CBase { int a; };

int min () {
CBase * pba
CBase * pbb
CDerived * pd;
pd = dynam c_cast <CDer i ved*>(pba) ;
if (pd==0) cout << "Null pointer on first type-cast" << endl;
pd = dynam c_cast <CDer i ved*>(pbb) ;
if (pd==0) cout << "Null pointer on second type-cast" << endl;
return O;

new CDeri ved;
new CBase;

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012

@ static_cast can perform conversions between pointers to
related classes, not only from the derived class to its base, but
also from a base class to its derived.

@ however, no safety check is performed during runtime to check if
the object being converted is in fact a full object of the destination
type.

@ Therefore, it is up to the programmer to ensure that the conversion
is safe.

cl ass CBase {};

cl ass CDerived: public CBase {};

CBase * a = new CBase;

CDerived * b = static_cast<CDerived+>(a);

@ b would point to an incomplete object of the class and could lead
to runtime errors if dereferenced.

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 10/37

reinterpret_cast

@ rei nterpret_cast converts any pointer type to any other
pointer type, even of unrelated classes.

@ The operation result is a simple binary copy of the value from one
pointer to the other.

@ All pointer conversions are allowed: neither the content pointed
nor the pointer type itself is checked.

@ It can also cast pointers to or from integer types.

@ This can be useful in low-level non portable code (i.e. interaction
with interrupt handlers, device drivers, etc.)

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 11/37

const_cast

@ This type of casting manipulates the constness of an object, either
to be set or to be removed.

@ For example, in order to pass a const argument to a function that
expects a non-constant parameter

/] const_cast
#i ncl ude <i ostreanw
usi ng nanmespace std;

void print (char * str)

{
cout << str << endl;

}

int main () {
const char * ¢ = "sanple text";
print (const_cast<char *> (c));
return O;

}

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 12 /37

© siicing

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 13/37

What happens?

@ Consider the following code snippet

cl ass Enpl oyee {
...
Enpl oyee& operat or=(const Enpl oyee& e);
Enpl oyee(const Enpl oyee& e);

cl ass Manager : public Enployee {

/1

H

void f(const Manager& m
Enpl oyee e;
e=m

}

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012

@ Only the “Employee” part of m is copied from m to e.
@ The assignment operator of Employee does not know anything
about managers!
@ This is called “object slicing” and it can be a source of errors and
various problems

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 15/37

Another example

@ If you upcast to an object instead of a pointer or reference,
something will happen that may surprise you: the object is “sliced”
until all that remains is the subobject that corresponds to the
destination type of your cast.

@ Consider the code in
.l exanpl es/ 05. nul ti pl e-i nheritance- exanpl es/sli cin

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 16 /37

./examples/05.multiple-inheritance-examples/slicing.cpp

Another example

@ If you upcast to an object instead of a pointer or reference,
something will happen that may surprise you: the object is “sliced”
until all that remains is the subobject that corresponds to the
destination type of your cast.

@ Consider the code in
.l exanpl es/ 05. nul ti pl e-i nheritance- exanpl es/sli cin

@ any calls to descri be() will cause an object the size of Pet to
be pushed on the stack

@ the compiler copies only the Pet portion of the object and slices
the derived portion off of the object, like this:

Before Slice Ofter Slice
Dog vpir Pet vptr
pname pnarme

favoritedctvity

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 16 /37

./examples/05.multiple-inheritance-examples/slicing.cpp

Slicing cont.

@ what happens to the virtual function call?

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 17 /37

Slicing cont.

@ what happens to the virtual function call?
@ The compiler is smart, and understand what is going on!

@ the compiler knows the precise type of the object because the
derived object has been forced to become a base object.

@ When passing by value, the copy-constructor for a Pet object is
used, which initialises the VPTR to the Pet VTABLE and copies
only the Pet parts of the object.

@ There’s no explicit copy-constructor here, so the compiler
synthesises one.

@ Under all interpretations, the object truly becomes a Pet during
slicing.

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 17 /37

e Private and protected inheritance

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 18/37

Private inheritance

@ Until now we have seen public inheritance
@ A derived class inherits the interface and the implementation of a

base class

@ With private inheritance it is possible to inherit only the

implementation

cl ass Base {
int p;

pr ot ect ed:
int q;

public:

public:
int g();

b

int main() {
Derived obj;

} obj . g();

Private inheritance |

Can access g and f () |

int f();
b —/
v _"{/’

| lcanonly callg() butnotf () I

G. Lipari (Scuola Superiore Sant'/Anna)

Multiple Inheritance

March 5, 2012 19/37

Private inheritance

@ Private inheritance does not model the classical isA relationship

@ In particular, it is not possible to automatically upcast from derived
to base class

cl ass Base {};
cl ass DerivedA :
class DerivedB :

Base *ptr;
Deri vedA pub;
DerivedB priv;

ptr
ptr

public Base {};

private Base {};

&ub; /] ok
&priv; [/ error!!

Deri vedB cannot be accessed as

" Base

G. Lipari (Scuola Superiore Sant'/Anna)

Multiple Inheritance March 5, 2012 20/37

Inheritance rules

Public Inheritance

| InBase | In Derived Client \
private cannot access cannot access
protected | as protected members | cannot access
public as public members can access
Protected Inheritance
| InBase | In Derived Client
private cannot access cannot access

protected | as protected members

cannot access

public as protected members

cannot access

Private Inheritance

| InBase | In Derived \ client
private cannot access cannot access
protected cannot access cannot access
public as private members | cannot access

G. Lipari (Scuola Superiore Sant'/Anna)

Multiple Inheritance

March 5, 2012

Private Inheritance

@ Why private inheritance?
@ Because we want to re-use implementation but not the interface

@ It can be seen as a sort of composition

@ When to use it

@ Itis not a popular technique
@ Composition is better done by declaring a member to another class

Composition Private Inheritance
class B { class B: private A {
Ax ptr; public:
publ i c: B() : A() {
B(O) { }
ptr = new A(); ~B() {
} }
~B() { h
delete ptr;
}
b

March 5, 2012

Multiple Inheritance

G. Lipari (Scuola Superiore Sant'/Anna)

@ Multiple inheritance

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 23/37

Multiple inheritance

@ A class can be derived from 2 or more base classes

A B
+f(): void +g(): void
C
+h(): void

@ C inherits the members of A and B

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 2437

Multiple inheritance

@ Syntax

C'pﬁf)lsl A @ If both A and B define two
void f(); functions with the same

}; name, there is an

class B { ambiguity

public: @ it can be solved with the
void f(); scope operator

}s

class C: public A public B C el

{ cl. A :f()

yoo cl.B::f()

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 25/37

Why multiple inheritance?

@ |s multiple inheritance really needed?
@ There are contrasts in the OO research community
@ Many OO languages do not support multiple inheritance
@ Some languages support the concept of “Interface” (e.g. Java)
@ Multiple inheritance can bring several problems both to the
programmers and to language designers

@ Therefore, the much simpler interface inheritance is used (that
mimics Java interfaces)

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 26 /37

Interface inheritance

@ It is called interface inheritance when an onjecy derives from a
base class and from an interface class

@ A simple example

Printable Object
+print() #size: int
4 +clone()
/\

ConcreteObject

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 27137

Interface and implementation inheritance

@ In interface inheritance

@ The base class is abstract (only contains the interface)

@ For each method there is only one final implementation in the
derived classes

@ ltis possible to always understand which function is called

@ Implementation inheritance is the one normally used by C++

@ the base class provides some implementation
@ when inheriting from a base class, the derived class inherits its
implementation (and not only the interface)

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 28/37

The diamond problem

@ What happens if class D @
inherits from two classes, B
and C which both inherith from
A? | 8 |
@ This may be a problem in
object oriented programming

with multiple inheritance! |:°:|

March 5, 2012 29/37

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance

The diamond problem

@ What happens if class D @
inherits from two classes, B
and C which both inherith from
A? | 8 |
@ This may be a problem in
object oriented programming

with multiple inheritance! on

@ Problem:
o If a method in D calls a method defined in A (and does not override
the method),

March 5, 2012 29/37

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance

The diamond problem

@ What happens if class D @
inherits from two classes, B
and C which both inherith from
A? | 8 |
@ This may be a problem in
object oriented programming

with multiple inheritance! on

@ Problem:
o If a method in D calls a method defined in A (and does not override

the method),
@ and B and C have overridden that method differently,

March 5, 2012 29/37

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance

The diamond problem

@ What happens if class D @
inherits from two classes, B
and C which both inherith from
A? | 8 |
@ This may be a problem in
object oriented programming

with multiple inheritance! on

@ Problem:
o If a method in D calls a method defined in A (and does not override
the method),
@ and B and C have overridden that method differently,
@ from which class does D inherit the method: B, or C?

March 5, 2012 29/37

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance

The diamond problem

@ What happens if class D @
inherits from two classes, B
and C which both inherith from
A? | B |

@ This may be a problem in
object oriented programming

with multiple inheritance! |:°:|

@ Problem:
o If a method in D calls a method defined in A (and does not override
the method),
@ and B and C have overridden that method differently,
@ from which class does D inherit the method: B, or C?
@ In C++ this is solved by using keyword “virtual” when inheriting from
a class

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 29/37

Virtual base class

@ If you do not use virtual inheritance

class A{...};

class B: public A{...};
class C: public A{...};
class D: public B, public C
{

H

@ With public inheritance the
base class is duplicated

@ To use one of the methods of
A, we have to specify which
“path” we want to follow with
the scope operator

@ Cannot upcast!

@ see

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 30/37

./examples/05.multiple-inheritance-examples/duplicate.cpp

Virtual base class

class A{...};

class B : vnrtual public A {...};
class C: virtual public A {. }
class D: public B, public C{ -}

@ With virtual public inheritance B |

the base class is inherited only A A
once

@ see
.l exanpl es/ 05. mul tipl e-inherit anceD’:ll es/ vbase. c
for an example

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 31/37

./examples/05.multiple-inheritance-examples/vbase.cpp

Initializing virtual base

@ The strangest thing in the previous code is the initializer for Top in
the Bottom constructor.

@ Normally one doesn’t worry about initializing sub-objects beyond
direct base classes, since all classes take care of initializing their
own bases.

@ There are, however, multiple paths from Bottom to Top,

@ who is responsible for performing the initialization?

@ For this reason, the most derived class must initialize a virtual
base.

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 32/37

Initializing virtual base

@ The strangest thing in the previous code is the initializer for Top in
the Bottom constructor.

@ Normally one doesn’t worry about initializing sub-objects beyond
direct base classes, since all classes take care of initializing their
own bases.

@ There are, however, multiple paths from Bottom to Top,

@ who is responsible for performing the initialization?

@ For this reason, the most derived class must initialize a virtual

base.

@ But what about the expressions in the Left and Right constructors
that also initialize Top?

@ they are ignored when a Bottom object is created
@ The compiler takes care of all this for you

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 32/37

a Pointers to members

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 33/37

Pointer to member

@ Can | have a pointer to a member of a class?

@ The problem with it is that the address of a member is only
defined with respect to the address of the object

@ The C++ pointer-to-member selects a location inside a class

@ The dilemma here is that a pointer needs an address, but there is
no “address” inside a class, only an “offset”;

@ selecting a member of a class means offsetting into that class

@ in other words, a pointer-to-member is a “relative” offset that can be
added to the address of an object

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 34/37

@ To define and assign a pointer to member you need the class
@ To dereference a pointer-to-member, you need the address of an

object
class Data {
public:
int x;
int vy;
b
int Data::*pm /1 pointer to menber
pm = &Dat a: : x; /'l assi gnnent
Dat a aa; /'l object
Data *pa = &aa; /1 pointer to object
pa->xpm = 5; /] assignnent to aa.x
aa.*pm = 10; /1 another assignnent to aa.x
pm = &Data: :vy;
aa.*pm = 20; /] assignnent to aa.y

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 35/37

Syntax for pointer-to-member functions

@ For member functions, the syntax is very similar:

class Sinple2 {
public:
int f(float) const { return 1; }

b

int (Sinple2::*xfp)(float) const;
int (Sinple2::*fp2)(float) const = &Sinple2::f;

int main() {
fp = &Sinmple2::f;

Si nmpl e2 obj ;

Sinmple2 *p = &obj;

p->xfp(.5); /1 calling the function
obj.xfp(.8); /1 calling it again

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 36/37

Another example

cl ass Wdget {
void f(int) const { cout << "Wdget::f()\n"; }
void g(int) const { cout << "Wdget::g()\n"; }
void h(int) const { cout << "Wdget::h()\n"; }
void i(int) const { cout << "Wdget::i()\n"; }
enum{ cnt = 4 };
void (Wdget::xfptrfcnt])(int) const;

public:

Wdget () {
fptr[0] = &N dget::f; // Full spec required
fptr[1] = &W dget::g;
fptr[2] = &N dget::h;
fptr[3] = &N dget::i;

}

void select(int i, int j) {
if(i <O || i >=cnt) return;

(this->fptr[i])(j);

int count() { return cnt; }

b

int main() {
W dget w;
for(int i =0; i <wcount(); i++)
w. sel ect (i, 47);

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 5, 2012 37/37

	Downcasting
	Slicing
	Private and protected inheritance
	Multiple inheritance
	Pointers to members

