
Object Oriented Software Design - II
Dynamic casting, Slicing, Private Inheritance, Multiple Inheritance

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 5, 2012

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 1 / 37

http://retis.sssup.it/~lipari

Outline

1 Downcasting

2 Slicing

3 Private and protected inheritance

4 Multiple inheritance

5 Pointers to members

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 2 / 37

Outline

1 Downcasting

2 Slicing

3 Private and protected inheritance

4 Multiple inheritance

5 Pointers to members

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 3 / 37

When inheritance is used

Inheritance should be used when we have a isA relation between
objects

you can say that a circle is a kind of shape
you can say that a rect is a shape

What if the derived class contains some special function that is
useful only for that class?

Suppose that we need to compute the diagonal of a rectangle

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 4 / 37

isA vs. isLikeA

If we put function diagonal() only in Rect, we cannot call it with
a pointer to shape

In fact, diagonal() is not part of the interface of shape

If we put function diagonal() in Shape, it is inherited by
Triangle and Circle

diagonal() does not make sense for a Circle
we should raise an error when diagonal() is called on a Circle

One solution is to put the function in the Shape interface
it will return an error for the other classes, like Triangle and
Circle

another solution is to put it only in Rect and then make a
downcasting when necessary

see
./examples/05.multiple-inheritance-examples/shapes_main.cpp
for the two solutions

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 5 / 37

./examples/05.multiple-inheritance-examples/shapes_main.cpp

Downcasting

One way to downcast is to use the dynamic_cast construct

class Shape { ... };

class Circle : public Shape { ... };

void f(Shape *s)
{

Circle *c;

c = dynamic_cast<Circle *>(s);
if (c == 0) {
// s does not point to a circle

}
else {
// s (and c) points to a circle

}
}

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 6 / 37

Dynamic cast

The dynamic_cast() is solved at run-time, by looking inside the
structure of the object

This feature is called run-time type identification (RTTI)

In some compiler, it can be disabled at compile time

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 7 / 37

Casting

Traditional explicit type-casting allows to convert any pointer into
any other pointer type, independently of the types they point to.

The subsequent call to member result will produce either a
run-time error or a unexpected result.

There are more safe way to perform casting:

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 8 / 37

dynamic_cast

dynamic_cast can be used only with pointers and references to
objects.
Its purpose is to ensure that the result of the type conversion is a
valid complete object of the requested class.
The result is the pointer itself if the conversion is possible;
The result is nullptr if the conversion is not possible:

class CBase { virtual void dummy() {} };
class CDerived: public CBase { int a; };

int main () {
CBase * pba = new CDerived;
CBase * pbb = new CBase;
CDerived * pd;
pd = dynamic_cast<CDerived*>(pba);
if (pd==0) cout << "Null pointer on first type-cast" << endl;
pd = dynamic_cast<CDerived*>(pbb);
if (pd==0) cout << "Null pointer on second type-cast" << endl;
return 0;

}

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 9 / 37

static_cast

static_cast can perform conversions between pointers to
related classes, not only from the derived class to its base, but
also from a base class to its derived.

however, no safety check is performed during runtime to check if
the object being converted is in fact a full object of the destination
type.

Therefore, it is up to the programmer to ensure that the conversion
is safe.

class CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

b would point to an incomplete object of the class and could lead
to runtime errors if dereferenced.

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 10 / 37

reinterpret_cast

reinterpret_cast converts any pointer type to any other
pointer type, even of unrelated classes.

The operation result is a simple binary copy of the value from one
pointer to the other.

All pointer conversions are allowed: neither the content pointed
nor the pointer type itself is checked.

It can also cast pointers to or from integer types.

This can be useful in low-level non portable code (i.e. interaction
with interrupt handlers, device drivers, etc.)

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 11 / 37

const_cast

This type of casting manipulates the constness of an object, either
to be set or to be removed.

For example, in order to pass a const argument to a function that
expects a non-constant parameter

// const_cast
#include <iostream>
using namespace std;

void print (char * str)
{

cout << str << endl;
}

int main () {
const char * c = "sample text";
print (const_cast<char *> (c));
return 0;

}

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 12 / 37

Outline

1 Downcasting

2 Slicing

3 Private and protected inheritance

4 Multiple inheritance

5 Pointers to members

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 13 / 37

What happens?

Consider the following code snippet

class Employee {
// ...
Employee& operator=(const Employee& e);
Employee(const Employee& e);

};

class Manager : public Employee {
// ...

};

void f(const Manager& m)
{

Employee e;
e = m;

}

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 14 / 37

Slicing

Only the “Employee” part of m is copied from m to e.
The assignment operator of Employee does not know anything
about managers!

This is called “object slicing” and it can be a source of errors and
various problems

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 15 / 37

Another example

If you upcast to an object instead of a pointer or reference,
something will happen that may surprise you: the object is “sliced”
until all that remains is the subobject that corresponds to the
destination type of your cast.
Consider the code in
./examples/05.multiple-inheritance-examples/slicing.cpp

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 16 / 37

./examples/05.multiple-inheritance-examples/slicing.cpp

Another example

If you upcast to an object instead of a pointer or reference,
something will happen that may surprise you: the object is “sliced”
until all that remains is the subobject that corresponds to the
destination type of your cast.
Consider the code in
./examples/05.multiple-inheritance-examples/slicing.cpp
any calls to describe() will cause an object the size of Pet to
be pushed on the stack
the compiler copies only the Pet portion of the object and slices
the derived portion off of the object, like this:

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 16 / 37

./examples/05.multiple-inheritance-examples/slicing.cpp

Slicing cont.

what happens to the virtual function call?

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 17 / 37

Slicing cont.

what happens to the virtual function call?

The compiler is smart, and understand what is going on!

the compiler knows the precise type of the object because the
derived object has been forced to become a base object.
When passing by value, the copy-constructor for a Pet object is
used, which initialises the VPTR to the Pet VTABLE and copies
only the Pet parts of the object.
There’s no explicit copy-constructor here, so the compiler
synthesises one.
Under all interpretations, the object truly becomes a Pet during
slicing.

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 17 / 37

Outline

1 Downcasting

2 Slicing

3 Private and protected inheritance

4 Multiple inheritance

5 Pointers to members

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 18 / 37

Private inheritance

Until now we have seen public inheritance
A derived class inherits the interface and the implementation of a
base class

With private inheritance it is possible to inherit only the
implementation

class Base {
int p;

protected:
int q;

public:
int f();

};
class Derived : private Base {
public:

int g();
};
int main() {

Derived obj;
obj.g();

}

Private inheritance

Can access q and f()

I can only call g() but not f()

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 19 / 37

Private inheritance

Private inheritance does not model the classical isA relationship

In particular, it is not possible to automatically upcast from derived
to base class

class Base {};
class DerivedA : public Base {};
class DerivedB : private Base {};

Base *ptr;
DerivedA pub;
DerivedB priv;

ptr = &pub; // ok
ptr = &priv; // error!!

DerivedB cannot be accessed as
Base

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 20 / 37

Inheritance rules

Public Inheritance
In Base In Derived Client

private cannot access cannot access
protected as protected members cannot access

public as public members can access

Protected Inheritance
In Base In Derived Client

private cannot access cannot access
protected as protected members cannot access

public as protected members cannot access

Private Inheritance
In Base In Derived client

private cannot access cannot access
protected cannot access cannot access

public as private members cannot access

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 21 / 37

Private Inheritance

Why private inheritance?
Because we want to re-use implementation but not the interface
It can be seen as a sort of composition

When to use it
It is not a popular technique
Composition is better done by declaring a member to another class

Composition

class B {
A* ptr;

public:
B() {

ptr = new A();
}
~B() {

delete ptr;
}

};

Private Inheritance

class B : private A {
public:

B() : A() {
}
~B() {
}

};

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 22 / 37

Outline

1 Downcasting

2 Slicing

3 Private and protected inheritance

4 Multiple inheritance

5 Pointers to members

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 23 / 37

Multiple inheritance

A class can be derived from 2 or more base classes

C inherits the members of A and B

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 24 / 37

Multiple inheritance

Syntax

class A {
public:

void f();
};

class B {
public:

void f();
};

class C : public A, public B
{

...
};

If both A and B define two
functions with the same
name, there is an
ambiguity

it can be solved with the
scope operator

C c1;

c1.A::f();
c1.B::f();

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 25 / 37

Why multiple inheritance?

Is multiple inheritance really needed?
There are contrasts in the OO research community
Many OO languages do not support multiple inheritance
Some languages support the concept of “Interface” (e.g. Java)

Multiple inheritance can bring several problems both to the
programmers and to language designers

Therefore, the much simpler interface inheritance is used (that
mimics Java interfaces)

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 26 / 37

Interface inheritance

It is called interface inheritance when an onjecy derives from a
base class and from an interface class

A simple example

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 27 / 37

Interface and implementation inheritance

In interface inheritance
The base class is abstract (only contains the interface)
For each method there is only one final implementation in the
derived classes
It is possible to always understand which function is called

Implementation inheritance is the one normally used by C++
the base class provides some implementation
when inheriting from a base class, the derived class inherits its
implementation (and not only the interface)

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 28 / 37

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 29 / 37

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 29 / 37

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 29 / 37

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,
from which class does D inherit the method: B, or C?

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 29 / 37

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,
from which class does D inherit the method: B, or C?
In C++ this is solved by using keyword “virtual” when inheriting from
a class

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 29 / 37

Virtual base class

If you do not use virtual inheritance

class A {...};
class B : public A {...};
class C : public A {...};
class D : public B, public C
{

...
};

With public inheritance the
base class is duplicated

To use one of the methods of
A, we have to specify which
“path” we want to follow with
the scope operator

Cannot upcast!

see
./examples/05.multiple-inheritance-examples/duplicate.cppG. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 30 / 37

./examples/05.multiple-inheritance-examples/duplicate.cpp

Virtual base class

class A {...};
class B : virtual public A {...};
class C : virtual public A {...};
class D : public B, public C {...};

With virtual public inheritance
the base class is inherited only
once

see
./examples/05.multiple-inheritance-examples/vbase.cpp
for an example

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 31 / 37

./examples/05.multiple-inheritance-examples/vbase.cpp

Initializing virtual base

The strangest thing in the previous code is the initializer for Top in
the Bottom constructor.

Normally one doesn’t worry about initializing sub-objects beyond
direct base classes, since all classes take care of initializing their
own bases.
There are, however, multiple paths from Bottom to Top,

who is responsible for performing the initialization?

For this reason, the most derived class must initialize a virtual
base.

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 32 / 37

Initializing virtual base

The strangest thing in the previous code is the initializer for Top in
the Bottom constructor.

Normally one doesn’t worry about initializing sub-objects beyond
direct base classes, since all classes take care of initializing their
own bases.
There are, however, multiple paths from Bottom to Top,

who is responsible for performing the initialization?

For this reason, the most derived class must initialize a virtual
base.
But what about the expressions in the Left and Right constructors
that also initialize Top?

they are ignored when a Bottom object is created
The compiler takes care of all this for you

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 32 / 37

Outline

1 Downcasting

2 Slicing

3 Private and protected inheritance

4 Multiple inheritance

5 Pointers to members

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 33 / 37

Pointer to member

Can I have a pointer to a member of a class?

The problem with it is that the address of a member is only
defined with respect to the address of the object
The C++ pointer-to-member selects a location inside a class

The dilemma here is that a pointer needs an address, but there is
no “address” inside a class, only an “offset”;
selecting a member of a class means offsetting into that class
in other words, a pointer-to-member is a “relative” offset that can be
added to the address of an object

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 34 / 37

Usage

To define and assign a pointer to member you need the class

To dereference a pointer-to-member, you need the address of an
object

class Data {
public:
int x;
int y;

};

int Data::*pm; // pointer to member
pm = &Data::x; // assignment
Data aa; // object
Data *pa = &aa; // pointer to object
pa->*pm = 5; // assignment to aa.x
aa.*pm = 10; // another assignment to aa.x
pm = &Data::y;
aa.*pm = 20; // assignment to aa.y

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 35 / 37

Syntax for pointer-to-member functions

For member functions, the syntax is very similar:

class Simple2 {
public:

int f(float) const { return 1; }
};

int (Simple2::*fp)(float) const;
int (Simple2::*fp2)(float) const = &Simple2::f;

int main() {
fp = &Simple2::f;

Simple2 obj;
Simple2 *p = &obj;

p->*fp(.5); // calling the function
obj.*fp(.8); // calling it again

}

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 36 / 37

Another example

class Widget {
void f(int) const { cout << "Widget::f()\n"; }
void g(int) const { cout << "Widget::g()\n"; }
void h(int) const { cout << "Widget::h()\n"; }
void i(int) const { cout << "Widget::i()\n"; }
enum { cnt = 4 };
void (Widget::*fptr[cnt])(int) const;

public:
Widget() {

fptr[0] = &Widget::f; // Full spec required
fptr[1] = &Widget::g;
fptr[2] = &Widget::h;
fptr[3] = &Widget::i;

}
void select(int i, int j) {

if(i < 0 || i >= cnt) return;
(this->*fptr[i])(j);

}
int count() { return cnt; }

};

int main() {
Widget w;
for(int i = 0; i < w.count(); i++)

w.select(i, 47);
}

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 5, 2012 37 / 37

	Downcasting
	Slicing
	Private and protected inheritance
	Multiple inheritance
	Pointers to members

