
Programming RT systems with pthreads

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

May 5, 2008

http://feanor.sssup.it/~lipari


Outline

1 Timing utilities

2 Periodic threads

3 Scheduler selection

4 Mutex and Conditions

5 Priority Inheritance and Ceiling

6 Exercises



Outline

1 Timing utilities

2 Periodic threads

3 Scheduler selection

4 Mutex and Conditions

5 Priority Inheritance and Ceiling

6 Exercises



Timing handling in POSIX

A time value is handled with different data structures and
variable times, depending on the use and scope

The “most standard” way to store time values for real-time
processing is through the timespec structure

// defined in <time.h>

struct timespec {
time_t tv_sec; // seconds
long tv_nsec; // nanoseconds

}

time_t is usually an integer (32 bits) that stores the time in
seconds

this data type can store both absolute and relative time
values



Operations with timespec

It is very common to perform operation on timespec
values. Unfortunately, the standard library does not provide
any helper function to do such kind of operations.

An example of two common operation follows (see file
time_utils .h and time_utils .c)



Example

void timespec_add_us(struct timespec *t, long us)
{
t->tv_nsec += us*1000;
if (t->tv_nsec > 1000000000) {

t->tv_nsec = t->tv_nsec - 1000000000;// + ms*1000000;
t->tv_sec += 1;

}
}

int timespec_cmp(struct timespec *a, struct timespec *b)
{
if (a->tv_sec > b->tv_sec) return 1;
else if (a->tv_sec < b->tv_sec) return -1;
else if (a->tv_sec == b->tv_sec) {

if (a->tv_nsec > b->tv_nsec) return 1;
else if (a->tv_nsec == b->tv_nsec) return 0;
else return -1;

}
}



Getting the time

To get/set the current time, the following functions are
available:

#include <time.h>

int clock_getres(clockid_t clock_id, struct timespec *res);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_settime(clockid_t clock_id, const struct timespec *tp);

These functions are part of the Real-Time profile of the
standard

(in Linux these functions are part of a separate RT library)

clockid_t is a data type that represents the type of
real-time clock that we want to use



Clocks
clock_id can be:

CLOCK_REALTIME represent the system real-time clock, it
is supported by all implementations. The value of thic clock
can be changed with a call to clock_settime()
CLOCK_MONOTONIC represents the system real-time
since startup, but cannot be changed. Not supported in all
implementations
if _POSIX_THREAD_CPUTIME is defined, then clock_id
can have a value of CLOCK_THREAD_CPUTIME_ID,
which represents a special clock that measures execution
time of the calling thread (i.e. it is increased only when a
thread executes)
if _POSIX_THREAD_CPUTIME it is possible to get a
special clock_id for a specific thread by calling
pthread_getcpuclockid()

#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id, clockid_t *clock_id);



Outline

1 Timing utilities

2 Periodic threads

3 Scheduler selection

4 Mutex and Conditions

5 Priority Inheritance and Ceiling

6 Exercises



sleep functions
To suspend a thread, we can call the following functions

#include <unistd.h>

unsigned sleep(unsigned seconds);

#include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

The first one only accepts seconds;
The second one is part of the POSIX real-time profile and
has a high precision (depends on the OS)
rqtp represents the interval of time during which the
thread is suspended
if the thread is woke up before the interval has elapsed (for
example, because of the reception of a signal), the
clock_nanosleep will return -1 and the second parameter
will contain the remaing time



Example of usage - I

code/nanosleepexample.c

void *thread(void *arg)
{
struct timespec interval;

interval.tv_sec = 0;
interval.tv_nsec = 500 * 1000000; // 500 msec
while(1) {

// perform computation
nanosleep(&interval, 0);

}
}



Example of usage - II

The previous example does not work!

code/nanosleepexample2.c

void *thread(void *arg)
{
struct timespec interval;
struct timespec next;
struct timespec rem;
struct timespec now;

interval.tv_sec = 0;
interval.tv_nsec = 500 * 1000000; // 500 msec
clock_gettime(&next);
while(1) {

// perform computation
timespec_add(&next, &interval); // compute next arrival
clock_gettime(&now); // get time
timespec_sub(&rem, &next, &now); // compute sleep interval
nanosleep(&rem, 0); // sleep

}
}



Problems

Once again, it does not work!
It could happen that the thread is preempted between calls
to clock_gettime and !nanosleep!,
in this case the interval is not correctly computed

The only “clean” solution is to use a system call that
performs the above operations atomically



Correct implementation
#include <time.h>

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

This is the most flexible and complete function for
suspending a thread (only available in the POSIX RT
profile)
clock_id is the clock id, usually CLOCK_REALTIME
flags is used to decided if we want to suspend for a relative
amount of time, or until an absolute point in time. It can be
TIMER_ABSTIME or 0 to mean relative interval
rqtp is a pointer to a timespec value that contain either the
interval of time or the absolute point in time until which the
thread is suspended (depending on the flag value)
rmtp only makes sense if the flag is 0, in which case if the
function is interrupted by a signal it contains the remaining
interval of sleeping time



Example
code/periodicslides.c

struct periodic_data {
int index;
long period_us;
int wcet_sim;

};

void *thread_code(void *arg) {
struct periodic_data *ps = (struct periodic_data *) arg;
int j; int a = 13, b = 17;
struct timespec next;
struct timespec now;

clock_gettime(CLOCK_REALTIME, &next);
while (1) {

timespec_add_us(&next, ps->period_us);

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME,
&next, NULL);

for (j=0; j<ps->wcet_sim; j++) a *= b;
}
return NULL;

}



Deadline miss detection
The following code is used to detect a deadline miss (in
this case, the behaviour is to abort the thread)

code/periodicslides2.c

void *thread_code(void *arg) {
struct periodic_data *ps = (struct periodic_data *) arg;
int j;
int a = 13, b = 17;
struct timespec next, now;

clock_gettime(CLOCK_REALTIME, &next);
while (1) {

clock_gettime(CLOCK_REALTIME, &now);
timespec_add_us(&next, ps->period_us);

if (timespec_cmp(&now, &next) > 0) {
fprintf(stderr, "Deadline miss for thread %d\n", ps->index);
fprintf(stderr, "now: %d sec %ld nsec next: %d sec %ldnsec \n",

now.tv_sec, now.tv_nsec, next.tv_sec, next.tv_nsec);
exit(-1);

}

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME,
&next, NULL);

for (j=0; j<ps->wcet_sim; j++) a *= b;
}
return NULL;

}



Outline

1 Timing utilities

2 Periodic threads

3 Scheduler selection

4 Mutex and Conditions

5 Priority Inheritance and Ceiling

6 Exercises



Scheduling policy

It is possible to specify the policy and the parameters by
using the thread attributes before creating the thread

#include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *a, int policy);

Input arguments:

a attributes

policy can be SCHED_RR, SCHED_FIFO (fixed priority scheduling with or without
round-robin) or SCHED_OTHER (standard Linux scheduler).

IMPORTANT: to use the real-time scheduling policies, the
user id of the process must be root.



Scheduling in POSIX

The scheduling policies in POSIX:

(SCHED_OTHER)

REAL−TIME
PRIORITIES

NON REAL−TIME
PRIORITIES

−39

0

1

100

99

98

−1

OR SCHED_RR)
(SCHED_FIFO



Example

pthread_t th1, th2, th3;
pthread_attr_t my_attr;
struct sched_param param1, param2, param3;

pthread_attr_init(&my_attr);
pthread_attr_setschedpolicy(&my_attr, SCHED_FIFO);

param1.sched_priority = 1;
param1.sched_priority = 2;
param1.sched_priority = 3;

pthread_attr_setschedparam(&my_attr, &param1);
pthread_create(&th1, &my_attr, body1, 0);

pthread_attr_setschedparam(&my_attr, &param2);
pthread_create(&th2, &my_attr, body2, 0);

pthread_attr_setschedparam(&my_attr, &param3);
pthread_create(&th3, &my_attr, body3, 0);

pthread_attr_destroy(&my_attr);



Warning

It is important to underline that only the superuser (root)
can assign real-time scheduling paramters to a thread, for
security reasons.

if a thread with SCHED_FIFO policy executes forever in a
loop, no other thread with lower priority can execute.

All other thread will starve.



Other API

To dynamically thread scheduling and priority, use the
following functions:

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

int sched_setparam(pid_t pid, const struct sched_param *param);

Input arguments:

pid id of the process (or thread) on which we want to act

policy the new scheduling policy

param the new scheduling parameters (priority)



Outline

1 Timing utilities

2 Periodic threads

3 Scheduler selection

4 Mutex and Conditions

5 Priority Inheritance and Ceiling

6 Exercises



Mutex generalities

A mutex is a special kind of binary semaphore, with several
restrictions:

It can only be used for mutual exclusion (and not for
synchronization)
If a thread locks the mutex, only the same thread can
unlock it!

Advantages:
It is possible to define RT protocols for scheduling, priority
inheritance, and blocking time reduction
Less possibility for errors



Mutex creation and usage

#include <pthread.h>

pthread_mutex_t m;

int pthread_mutex_init(pthread_mutex_t *m,
const pthread_mutex_attr_t *attr);

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread_mutex_t * mutex);

lock corresponds to a wait on a binary semaphore

unlock corresponds to a post on a binay semaphore

a mutex can be initialized with attributes regarding the
resource access protocol



Example with mutexes

code/mutex.c

#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>

pthread_mutex_t mymutex;

void *body(void *arg)
{
int i,j;

for (j=0; j<40; j++) {

pthread_mutex_lock(&mymutex);
for (i=0; i<1000000; i++);
fprintf(stderr,(char *)arg);
pthread_mutex_unlock(&mymutex);

}

return NULL;
}



Example continued

code/mutex.c

int main()
{
pthread_t t1,t2,t3;
pthread_attr_t myattr;
int err;

pthread_mutexattr_t mymutexattr;

pthread_mutexattr_init(&mymutexattr);
pthread_mutex_init(&mymutex, &mymutexattr);
pthread_mutexattr_destroy(&mymutexattr);

pthread_attr_init(&myattr);
err = pthread_create(&t1, &myattr, body, (void *)".");
err = pthread_create(&t2, &myattr, body, (void *)"#");
err = pthread_create(&t3, &myattr, body, (void *)"o");
pthread_attr_destroy(&myattr);

pthread_join(t1, NULL);
pthread_join(t2, NULL);
pthread_join(t3, NULL);

printf("\n");

return 0;
}



Condition variables

To simplify the implementation of critical section with
mutex, it is possible to use condition variables

A condition variable is a special kind of synchronization
primitive that can only be used together with a mutex

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

A call to pthread_cond_wait() is equivalent to:
release the mutex
block on the condition
when unblock from condition, lock the mutex again



Condition variables

To unblock a thread on a condition

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

The first one unblocks one thread blocked on the condition

The second one unblocks all threads blocked in the
conditions



More on conditions

A condition variable is not a sempahore
internally, there is a queue of blocked threads
however, unlike the semaphore there is no counter
hence, if a thread calls pthread_cond_signal and there is no
blocked thread on the condition, nothing happens
Vice-versa, a call to pthread_cond_wait is always a
blocking call



Example with conditions

Let’s implement a synchronization barrier with mutex and
condition variables

A synch barrier can synchronize up to N thread on one
point
it has only one method, synch()
the first N-1 threads that call synch() will block, the N-th will
unblock all previous threads



Example with conditions

code/synch.cpp

class SynchObj {
pthread_mutex_t m;
pthread_cond_t c;
int nblocked;
int nthreads;

public:
SynchObj(int n);

void synch();
};

SynchObj::SynchObj(int n)
{
nthreads = n;
nblocked = 0;
pthread_mutex_init(&m, 0);
pthread_cond_init(&c, 0);

}



Example continued

code/synch.cpp

void SynchObj::synch()
{
pthread_mutex_lock(&m);

nblocked++;

if (nblocked < nthreads)
pthread_cond_wait(&c, &m);

else {
nblocked = 0;
pthread_cond_broadcast(&c);

}

pthread_mutex_unlock(&m);
}



Exercise

Suppose we want to guarantee that a set of N periodic
threads are activated at the same time (i.e. their first
instance all arrive at the same time)

When calling pthread_create, the thread is immediately
active, so we cannot guarantee synchronicity
We must implement this behavior manually

Every thread, will initially block on a condition
when the manager (the main()) calls a function, all threads
are waken up at the same time, and get the same value of
the arrival time



Design the data structure
code/synchperiodic.h

#ifndef __SYNCHPERIODIC_H__
#define __SYNCHPERIODIC_H__

#include <time.h>
#include <pthread.h>

class PeriodicBarrier {
public:
// constructor, initialize the object
PeriodicBarrier(int n);

// called by the threads for initial synch,
// returns the same arrival time for all threads
void wait(struct timespec *a);

// called by the manager thread
void start();

private:
struct timespec arrival;

int nthreads;
int blocked;

pthread_mutex_t m;
pthread_cond_t c_threads;
pthread_cond_t c_manager;

};

#endif



Implementation
code/synchperiodic.cpp

#include "synchperiodic.h"

PeriodicBarrier::PeriodicBarrier(int n) :
nthreads(n), blocked(0)

{
pthread_mutex_init(&m, 0);
pthread_cond_init(&c_threads, 0);
pthread_cond_init(&c_manager, 0);

}

void PeriodicBarrier::wait(struct timespec *a)
{
pthread_mutex_lock(&m);
blocked++;
if (blocked == nthreads)

pthread_cond_signal(&c_manager);
pthread_cond_wait(&c_threads, &m);

*a = arrival;
pthread_mutex_unlock(&m);

}

void PeriodicBarrier::start()
{
pthread_mutex_lock(&m);
if (blocked < nthreads)

pthread_cond_wait(&c_manager, &m);

pthread_cond_broadcast(&c_threads);
clock_gettime(CLOCK_REALTIME, &arrival);
pthread_mutex_unlock(&m);

}



Thread code

code/exsynchper.cpp

#define NTHREADS 3

PeriodicBarrier pb(3);

void *thread_code(void *arg) {
struct periodic_data *ps = (struct periodic_data *) arg;
struct timespec next;

pb.wait(&next);

while (1) {
fprintf(stdout, "TH %d activated at time %ld\n", ps->index,

next.tv_nsec/1000);

waste(ps->wcet_sim);

timespec_add_us(&next, ps->period_us);
clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME,

&next, NULL);
}
return NULL;

}



Exercise

Modify the previous code to add an offset to the periodic
threads
Modify the previous code to add a “stop” mechanism (i.e.
the manager thread can stop all periodic threads by
pressing a key on the keyboard)

Hint: modify the data structure such that the wait () is called
every instance, and add a stop() function



Outline

1 Timing utilities

2 Periodic threads

3 Scheduler selection

4 Mutex and Conditions

5 Priority Inheritance and Ceiling

6 Exercises



Setting protocol attributes

With mutexes it is possible to set the priority inheritance or
priority ceiling protocol

This can be done on each semaphore separately by using
the pthread_mutexattr_t attributes

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *
restrict attr, int *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

where the protocol can be PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT, for no protocol, priority
inheritance or priority ceiling, respectively



Priority Ceiling

when specifying PTHREAD_PRIO_PROTECT, it is
necessary to specigy the priority ceiling of the mutex with
the following function

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

where prioceiling is the ceiling of the semaphore



Example with priority inheritance

In this example, we create 2 mutex semaphores with
priority inheritance

pthread_mutexattr_t mymutexattr;

pthread_mutexattr_init(&mymutexattr);
pthread_mutexattr_setprotocol(&mymutexattr, PTHREAD_PRIO_INHERIT);
pthread_mutex_init(&mymutex1, &mymutexattr);
pthread_mutex_init(&mymutex2, &mymutexattr);
pthread_mutexattr_destroy(&mymutexattr);

Notice that we can reuse the same attributes for the 2
semaphores

Of course, the usage of the mutex remains the same (i.e.
lock() and unlock() where appropriate)



Example with priority ceiling

In this example, we create 2 mutex semaphores with
priority ceiling

pthread_mutexattr_t mymutexattr;

pthread_mutexattr_init(&mymutexattr);
pthread_mutexattr_setprotocol(&mymutexattr, PTHREAD_PRIO_PROTECT);
pthread_mutexattr_setprioceiling(&mymutexattr, 10);
pthread_mutex_init(&mymutex1, &mymutexattr);
pthread_mutexattr_setprioceiling(&mymutexattr, 15);
pthread_mutex_init(&mymutex(2, &mymutexattr);
pthread_mutexattr_destroy(&mymutexattr);

In this case, the first mutex (mymutex1) has priority ceiling
equal to 10 (i.e. the highest priority task that accesses this
semaphore has priority 10)

the second mutex (mymutex2) has priority 15



Outline

1 Timing utilities

2 Periodic threads

3 Scheduler selection

4 Mutex and Conditions

5 Priority Inheritance and Ceiling

6 Exercises



Some exercise

1 Modify the periodic thread example so that a periodic
thread can tolerate up to N consecutive deadline misses.
Write an example that demonstrate the functionality

2 Modify the periodic thread example so that the period can
be modified by an external manager thread. Write an
example that demonstrates the functionality

3 (Dual priority) Modify the periodic thread example so that
each thread is assigned 2 priorities and:

The first part of the code runs at “low” priority
The last part of the code executes at “high” priority

4 Write a “chain” of threads, so that each thread can start
executing only when the previous one has completed its
job

5 Which solution is better for the dual priority scheme? the
chain of two tasks of modifying the priority on the fly?


	Timing utilities
	Periodic threads
	Scheduler selection
	Mutex and Conditions
	Priority Inheritance and Ceiling
	Exercises

