
Coding Standards in C/C++

Giuseppe Lipari, Fabio Checconi
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

October 1, 2009

http://retis.sssup.it/~lipari

Outline

1 Writing Clean Code
Linux Coding Standards

2 Modules

3 Documentation

4 Makefiles

Outline

1 Writing Clean Code
Linux Coding Standards

2 Modules

3 Documentation

4 Makefiles

Why it is Important to Write Clean Code?

Readability: people, and even yourself will have to understand
what you write, it should be written to be easy to
follow, properly documented and as uniform as
possible.

Why it is Important to Write Clean Code?

Readability: people, and even yourself will have to understand
what you write, it should be written to be easy to
follow, properly documented and as uniform as
possible.

Teamwork: many contributors may need to work on the same
code, they’ll appreciate the conformance to an
agreed standard to better understand an modify it.

Why it is Important to Write Clean Code?

Readability: people, and even yourself will have to understand
what you write, it should be written to be easy to
follow, properly documented and as uniform as
possible.

Teamwork: many contributors may need to work on the same
code, they’ll appreciate the conformance to an
agreed standard to better understand an modify it.

Code re-use: clean and manageable code is easier to reuse.

Why it is Important to Write Clean Code?

Readability: people, and even yourself will have to understand
what you write, it should be written to be easy to
follow, properly documented and as uniform as
possible.

Teamwork: many contributors may need to work on the same
code, they’ll appreciate the conformance to an
agreed standard to better understand an modify it.

Code re-use: clean and manageable code is easier to reuse.

Code mainteinance: maintaining code involves understanding
it after years of changes done by other people; the
better is to understand or modify, the easier is the
maintainer’s work.

Coding standards

An example of rules for writing clean code can be found
here:
http://www.possibility.com/Cpp/CppCodingStandard.html.

We will summarize some of them in the following.

http://www.possibility.com/Cpp/CppCodingStandard.html

Spaghetti-like Programming

Writing programs with a complex control structure using
unstructured constructs (e.g., goto’s, exceptions, longjmp()
etc.) can render these programs unreadable and
unmanageable. This is especially true for assembly languages.

int i = 0;
loop:

f(i);
i++;
if (i < LOOPS)

goto loop;

/* ... */
for (i = 0; i < LOOPS; i++)

f(i);

Current Practice

Many open source projects require that their contributors
adhere to some coding standard. Some examples:

the Linux kernel [1] has strict rules to deterimine if code
can be accepted or not. Rules are described in the
Documentation/CodingStyle in the source tree, and
are enforced checking patches with
scripts/checkpatch.pl.

The Free Software Foundation has its own set of coding
standards, see
http://www.gnu.org/prep/standards/.

On BSD systems, check man 9 style.

The Hungarian notation (we will not use it).

Outline

1 Writing Clean Code
Linux Coding Standards

2 Modules

3 Documentation

4 Makefiles

Linux Coding Standards

Any piece of code, to be accepted into the Linux kernel, has to
conform to many rules, described in various files in
Documentation/, mostly concerning the coding style of the
source code, some common practices, that have to match the
rest of the codebase, and the submission process.

Coding Style

The main rules (and some justifications for them) are:

tabs are 8 characters wide. Using smaller tabs allows too
dense code, that cannot be parsed easily by the average
human reader.

Coding Style

The main rules (and some justifications for them) are:

tabs are 8 characters wide. Using smaller tabs allows too
dense code, that cannot be parsed easily by the average
human reader.
Lines are (at most) 80 characters wide. Again, longer lines
are difficult to parse. The need for more than 80 columns
should ring some bells, as it, in the average case, stems
from:

Coding Style

The main rules (and some justifications for them) are:

tabs are 8 characters wide. Using smaller tabs allows too
dense code, that cannot be parsed easily by the average
human reader.
Lines are (at most) 80 characters wide. Again, longer lines
are difficult to parse. The need for more than 80 columns
should ring some bells, as it, in the average case, stems
from:

identifiers that are too long;

Coding Style

The main rules (and some justifications for them) are:

tabs are 8 characters wide. Using smaller tabs allows too
dense code, that cannot be parsed easily by the average
human reader.
Lines are (at most) 80 characters wide. Again, longer lines
are difficult to parse. The need for more than 80 columns
should ring some bells, as it, in the average case, stems
from:

identifiers that are too long;
too many intentation levels;

Coding Style

The main rules (and some justifications for them) are:

tabs are 8 characters wide. Using smaller tabs allows too
dense code, that cannot be parsed easily by the average
human reader.
Lines are (at most) 80 characters wide. Again, longer lines
are difficult to parse. The need for more than 80 columns
should ring some bells, as it, in the average case, stems
from:

identifiers that are too long;
too many intentation levels;
improper (or lack of) use of functions.

Coding Style

The main rules (and some justifications for them) are:

tabs are 8 characters wide. Using smaller tabs allows too
dense code, that cannot be parsed easily by the average
human reader.
Lines are (at most) 80 characters wide. Again, longer lines
are difficult to parse. The need for more than 80 columns
should ring some bells, as it, in the average case, stems
from:

identifiers that are too long;
too many intentation levels;
improper (or lack of) use of functions.

Multiple statements should not be put into a single line.
This, along with the 8 char-tab rule allows an easy
recognition of basic blocks and statements.

Tabs and Line Width: an Example

static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle)

{
const struct sched_class *class;

for (class = sched_class_highest; class; class = class->next)
if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))

return 1;

return 0;
}

Coding Style: Placing Braces

Brace placement is not random:

Coding Style: Placing Braces

Brace placement is not random:
functions have their opening brace in the line after the
definition.

Coding Style: Placing Braces

Brace placement is not random:
functions have their opening brace in the line after the
definition.
for, if, while, switch statements have their
opening braces on the same line of the statement.

Coding Style: Placing Braces

Brace placement is not random:
functions have their opening brace in the line after the
definition.
for, if, while, switch statements have their
opening braces on the same line of the statement.
Except for do ... while and else statements, the
closing brace is on a line on its own.

Coding Style: Placing Braces

Brace placement is not random:
functions have their opening brace in the line after the
definition.
for, if, while, switch statements have their
opening braces on the same line of the statement.
Except for do ... while and else statements, the
closing brace is on a line on its own.

The idea is that functions have to be clearly identified at
first sight; brace placement should help identifying code
blocks. There is no need to waste an additional line for
statements that open a new block (except functions).

Coding Style: Using Spaces

Use a space after keywords.

Coding Style: Using Spaces

Use a space after keywords.

Do not use spaces between a function name and the
parenthesis enclosing its arguments.

Coding Style: Using Spaces

Use a space after keywords.

Do not use spaces between a function name and the
parenthesis enclosing its arguments.

Place the * denoting a pointer close to the pointer name
instead of the type name.

Coding Style: Using Spaces

Use a space after keywords.

Do not use spaces between a function name and the
parenthesis enclosing its arguments.

Place the * denoting a pointer close to the pointer name
instead of the type name.

Use spaces around binary arithmetic operators.

Coding Style: Using Spaces

Use a space after keywords.

Do not use spaces between a function name and the
parenthesis enclosing its arguments.

Place the * denoting a pointer close to the pointer name
instead of the type name.

Use spaces around binary arithmetic operators.

Do not use spaces before/after unary operators and
around . and ->.

Coding Style: Naming

Function and variable names should help the reader
understanding the code, at the same time avoiding
redundancy and excessive code bloat. A good balance
between properly chosen identifiers and good comments
should be achieved.

Coding Style: Naming

Function and variable names should help the reader
understanding the code, at the same time avoiding
redundancy and excessive code bloat. A good balance
between properly chosen identifiers and good comments
should be achieved.

Global variable names should be descriptive, both to avoid
namespace collisions and to ease reading the code.

Coding Style: Types

Typedefs should not be used as shortcuts for longer type
names. They should be avoided as much as possible as
they often hide from the reader the true meaning of the
type.

Coding Style: Types

Typedefs should not be used as shortcuts for longer type
names. They should be avoided as much as possible as
they often hide from the reader the true meaning of the
type.

In particular, typedefs for structures should be avoided, as
they hide the fact that the referred type is an aggregate
one.

Coding Style: Types

Typedefs should not be used as shortcuts for longer type
names. They should be avoided as much as possible as
they often hide from the reader the true meaning of the
type.

In particular, typedefs for structures should be avoided, as
they hide the fact that the referred type is an aggregate
one.

However typedefs can be used for completetly opaque
objects or to better specify the meaning of integer types.

Coding Style: Functions

Functions should be short and simple. They should do just
one thing, hopefully well.

Coding Style: Functions

Functions should be short and simple. They should do just
one thing, hopefully well.

A function should always fit one or two 80x24 terminal
screens; for complex functions, or functions with many (i.e.,
more than 3) indentation levels, this may be even be too
much.

Coding Style: Functions

Functions should be short and simple. They should do just
one thing, hopefully well.

A function should always fit one or two 80x24 terminal
screens; for complex functions, or functions with many (i.e.,
more than 3) indentation levels, this may be even be too
much.

Don’t use too many local variables (rule of thumb: can you
remember all of them and their meaning while reading the
code?)

Outline

1 Writing Clean Code
Linux Coding Standards

2 Modules

3 Documentation

4 Makefiles

What is a Module

A module is a software component with well-defined
interfaces toward the external world (i.e., its users and its
building blocks).

What is a Module

A module is a software component with well-defined
interfaces toward the external world (i.e., its users and its
building blocks).

The interface of a module is defined by:
data types: all the data manipulated by the module have a

common structure, and generally this
structure is available to the module only (think
about C++/Java classes);

functions: the module users invoke the services it
provides using a well-defined, and hopefully
documented, set of functions.

Interface vs. Implementation

The interface of a module is whatever defines how the
module has to be used. Data types and function
declarations compose the interface of a module.

The implementation of a module is the definition of its
behavior. In other words, the implementation specifies how
the module does all the things exposed via its interface.

C++ classes and modules

Typically, a module only contains one class

One header file that contains the class declaration (.h or
.hpp or .hh or .hxx)

One source file that contains the class implementation
(.cpp or .cc or .cxx)

The file name should be named after the class name

Example: class SynchBuffer implementation goes into
file SynchBuffer.cpp, and its interface/specification into
SynchBuffer.hpp

Global variables

Global variables must not be abused, since they pollute the
global identifier namespace and create dependencies and
side effects that become hard to track and control as the
code grows.
Remember:

The variable is declared in an header file by using keyword
extern. The compiler does not allocate memory

Global variables

Global variables must not be abused, since they pollute the
global identifier namespace and create dependencies and
side effects that become hard to track and control as the
code grows.
Remember:

The variable is declared in an header file by using keyword
extern. The compiler does not allocate memory
The variable is defined in the source file (the compiler
allocates memory)

Global variables

Global variables must not be abused, since they pollute the
global identifier namespace and create dependencies and
side effects that become hard to track and control as the
code grows.
Remember:

The variable is declared in an header file by using keyword
extern. The compiler does not allocate memory
The variable is defined in the source file (the compiler
allocates memory)

Example:
myfile.h
...
extern int myvar; /**< declaration */
...

myfile.cpp
int myvar; /**< definition */

Guards for Include Files

Header files should specify interfaces only. They may be
included multiple times during the compilation of a single
execution unit, and this can result in compilation errors or
subtle bugs if no precautions are taken.

#ifndef __MYINCLUDE_FILE_H__
#define __MYINCLUDE_FILE_H__

#include "pippo.h"

extern int global_var;

int myfun(int a, double b);
char *get_string(int size);

#endif

Outline

1 Writing Clean Code
Linux Coding Standards

2 Modules

3 Documentation

4 Makefiles

Commenting the Code

Comments should say everithing that is not obvious from
the code, and should help understanding it; one should
focus on what the code does.

If one needs a comment to say how the code does
something, maybe that code is too involved and can be
rewritten in some more readable way.

Choosing proper identifiers and using proper function
splitting can help readability more than a lot of comments.

Outline

1 Writing Clean Code
Linux Coding Standards

2 Modules

3 Documentation

4 Makefiles

	Writing Clean Code
	Linux Coding Standards

	Modules
	Documentation
	Makefiles

