
Concurrent Programming in Unix
Short tutorial on socket programming

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna

http://feanor.sssup.it/~lipari

Outline

1 Socket model
A complete example

2 Concurrent servers

Client Server model

In client-server model:

The server is initially blocked waiting for connection
requests by the clients;

communication is initiated by the client;

the client needs to know the address of the server, while
the server accepts connections by any client;

Once the communication channel has been established,
the server knows the client address, and communication
can be carried on from both sides (initiated by the server or
by the client).

Sockets

A socket is a communication channel between processes
(IPC).

It is a general communication interface, that can be used for
many protocols
We will only analyze the Internet protocols (TCP/IP)
Depending on the protocol, different primitives can be used
for communication (read/write, recv, send).

Socket interface

A socket is a file descriptor, that can be created with the
following primitive:

#include <sys/socket.h>

int socket(int family, int type, int protocol);

Input arguments:

family Specifies the protocol family.

type It specifies the kind of connection tjhat will be established on the socket

protocol Protocol that will be used. Usually set equal to 0 (the default protocol), as the
pair (family, type) usually identifies a default protocol.

The socket function returns a file descriptor that can be
used later to

establish a connection
perform the communication

The usage is different in the server and in the clients.

Socket families and types

In this short tutorial we will only analyze the combination
family=AF_INET and type=SOCK_STREAM, that correspondes to
TCP/IP. However, there are other possibilities:

family Description

AF_INET IPv4 protocols
AF_INET6 IPv6 protocols
AF_LOCAL Unix domain protocols
AF_ROUTE Routing sockets
AF_KEY Key sockets

Table: Protocol families

type Description

SOCK_STREAM stream socket
SOCK_DGRAM datagram socket
SOCK_RAW raw socket

Table: Socket type

TCP/IP connection scheme

TCP Client

socket()

socket()

bind()

listen()

accept()

write()

connect()

write()

read()

read()

three−way handshake
Bloccato in attesa
di connessioni dai client

TCP Server

Figure: Connection scheme

Server sequence
This is the list of calls in the server:

socket creation

bind

listen

accept

Let’s start from the bind

It binds the socket to a specific internet address
An internet address (also called end-point) consists of two
components:

IP address
port number (16 bits, 0-65535)

A node (computer) can have more than one IP address (for
example it has multiple network cards because it is
attached to more than one network)

On any internet address, each application can receive
connections on any port.

Internet addresses

Ports in the range 0-1023 are reserved to specific
applications (well-known ports)

The list of assigned ports is reported in RFC 1700, and
updated by IANA (Internet Assigned Numbers Authority)

Ports in the range 1024-49151 are freely usable by
applications (registered ports)

Some of them are quite commonly used always by the
same applications (e.g. Zope uses 8080 consistently)
IANA keeps track of these ports, but has no power on them

Ports in the range 49152-65535 are assigned by the
operating system to client processes (ephemeral ports).

They are dynamically associated to an application

Internet address specification

In header file <netinet/in.h>, it is possible to find the following
data structures that must be filled by the application:

struct sockaddr_in {
uint8_t sin_len; /* lenght. of struct */
sa_family sin_family; /* AF_INET */
in_port_t sin_port; /* port (16 bit) */
struct in_addr sin_addr; /* IPv4 address */
char sin_zero[8]; /* not used */

};

struct in_addr {
in_addr_t s_addr; /* IPv4 address (32 bit) */

};

Getting IP address

Usually the IP address is unique for each node

Should not be encoded in the program (otherwise the
program cannot be ported on another computer without
re-compiling)

It is possible to implicitely let the OS set the IP address of
the socket by setting the s_addr field of the struct in_addr to
INADDR_ANY

Example:

struct sockaddr_in my_addr;
int myport = 50000;

bzero(&my_addr, sizeof(struct sockaddr_in));
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(myport);
my_addr.sin_addr.s_addr = INADDR_ANY;
base_sd = socket(AF_INET, SOCK_STREAM, 0);
bind(base_sd, (struct sockaddr *)(&my_addr),

sizeof(struct sockaddr_in));

Listen

#include <sys/socket.h>

int listen(int sockfd, int backlog);

Input arguments:

sockfd socket descriptor (returned by socket()

backlog maximum number of connection requests that can be buffered before being
processed by the accept().

The listen serves two purpouses:

Transforms the socket into passive socket (i.e. we want to
receive connections on this socket)

Specifies the lenght of the request queue. It must be set
equal to the maximum number of requests that can arrive
before two consecutive calls to accept, otherwise some
request can be lost (they will go into a timeout)

Accept

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *cliaddr,
socklen_t *addrlen);

Input arguments:

sockfd passive socket deswcriptor on which the server will block waiting for incoming
connection requests

cliaddr if the function returns succesfully, contains the internet address (IP + port) of the
client that has sent the request

addrlen when the function returns, it contains the lenght in bytes of the structure cliaddr

Return value:

The function will return a new socket descriptor that will be used for
communication with the client

In case or error, returns -1

The new socket descriptor is active, and is dedicated to
communication with the specific client that made the
request. It lives until the request has been completed.

Client connection

The client is more simple: it only needs to perform a connect

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *saddr,
socklen_t addrlen);

Input arguments:

sockfd the socket descriptor that will be used for communication (active)

saddr pointer to a structure that contains the Internet address (IP + port) of the server

addrlen lenght in bytes of the structure given as second paramter

Return value:

0 if the connection was correctly established

-1 in case of error

The client does not need to call the bind, as its Internet
address is automatically specified by the OS (node IP
address + ephemeral port).

Connection errors

The client send a SYN packet when the connect is invoked

If no server is listening on the specified port, the OS of the
destination host will probably send a RST packet in
response to the SYN packet sent by the client, which
results in a ECONNREFUSED error

If the destination host cannot be reached, the intermediate
routers will send back a set of ICMP packets, and the client
gets a EHOSTUNREACH or a ENETUNREACH error.

Finally, if the destination host does not respond to the SYN
(for some reason), after a timeout (typically 75 seconds),
the error ETIMEDOUT is returned.

Closing the connection

#include <unistd.h>

int close(int fd);

The same function used for files

The function returns immediately

on internet sockets, the remote connection must be closed,
and this may take some time;

all queued data are sent
then, the socket is internally marked as closed, but cannot
be re-used until the remote host agrees on the closure
if the socket descriptor is shared among different
processes, a reference counter is decreased, and only
when the last process close the socket, the closing
procedure is initiated

Getting host name

In most cases, we need to refer to hosts by names. The DNS
protocol is used through the following function

#include <netdb.h>

struct hostent *gethostbyname(const char *name);

Warning! The function returns a pointer to a unique address
in memory where the structur is stored. Therefore,
after the following code, s1 and s2 point to the
same address in memory that contains the
address of the second host:

struct hostent *s1,*s2;
...

s1 = gethostbyname("www.sssup.it");
s2 = gethostbyname("www.ing.unipi.it");

Example: the client

A simple example: a server that transforms all characters of a
string into capital letters.

struct sockaddr_in s_addr;
struct hostent *server;

int sd, s_port;
char msg[100];

int main(int argc, char *argv[])
{
if (argc < 3) user_err("usage: client <servername> <port>");

s_port = atoi(argv[2]);

sd = socket(AF_INET, SOCK_STREAM, 0);

bzero(&s_addr, sizeof(struct sockaddr_in));
s_addr.sin_family = AF_INET;
s_addr.sin_port = htons(s_port);
server = gethostbyname(argv[1]);
if (server == 0) sys_err("server not found!");

Example continued

bcopy((char*)server->h_addr,
(char*)&s_addr.sin_addr.s_addr,
server->h_length);

if (connect(sd, CAST_ADDR(&s_addr), sizeof(struct sockaddr_in)) < 0)
sys_err("connect failed!");

sprintf(msg, "I am the client with PID n %d\n", getpid());
printf("Client: sending message!\n");
write(sd, msg, strlen(msg));
read(sd, msg, 100);
printf("client: Message received back: %s", msg);
close(sd);

}

Example: the server

Let’s start with an utility function that sets up the passive socket.

int init_sd(int myport)
{
struct sockaddr_in my_addr;
int sd;

bzero(&my_addr, sizeof(struct sockaddr_in));
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(myport);
my_addr.sin_addr.s_addr = INADDR_ANY;

sd = socket(AF_INET, SOCK_STREAM, 0);
if (bind(sd, CAST_ADDR(&my_addr), sizeof(my_addr)) < 0)

sys_err("bind failed!");

if (listen(sd, 5) < 0)
sys_err("listen failed!");

printf("Server listening on port %d\n", myport);

return sd;
}

Example: the server
Now the main cycle: notice that we move the actual service into
a separate service routine do_service().
int main(int argc, char *argv[])
{
struct sockaddr_in c_add;
int base_sd, curr_sd;
int addrlen;
int myport;
int err = 0;

if (argc < 2) user_err("usage: server <port>");
myport = atoi(argv[1]);

base_sd = init_sd(myport);

while (!err) {
curr_sd = accept(base_sd, CAST_ADDR(&c_add), &addrlen);
if (curr_sd < 0) sys_err("accept failed!");

do_service(curr_sd);
close(curr_sd);

}
close(base_sd);

}

Example: the service routine

void do_service(int sd)
{
int i, l=1;
char msg[BUFFERSIZE];
char ris[BUFFERSIZE];

do {
l = read(sd, msg, BUFFERSIZE - 1);
if (l == 0) break;
msg[l] = 0;
printf("Server: received %s\n", msg);
for (i=0; i<l; i++) msg[i] = toupper(msg[i]);
printf("Server: sending %s\n", msg);
write(sd, msg, l);

} while (l!=0);
}

Outline

1 Socket model
A complete example

2 Concurrent servers

Why concurrency in servers

In the previous example, we have shown a sequential server.

It serves requests sequentially, in order of arrival (FIFO)

A client has to wait for all preceding requests and for its
request to be served before getting the response
Problems:

A short request by a client may have to wait for longer
requests to be completed
The server can be blocked on I/O while serving a request;
this is inefficient!

A solution is to have concurrent servers:
Multi-process: one process per client (dynamically created,
or “pre-forked”);
Multi-thread: one thread per client (dynamically created, or
pre-created).

Multi-process servers
int main(int argc, char *argv[])
{
struct sockaddr_in c_add;
int base_sd, curr_sd;
int addrlen;
int myport;
int err = 0;
int ch=0;

if (argc < 2) user_err("usage: server <port>");
myport = atoi(argv[1]);

base_sd = init_sd(myport);

signal(SIGCHLD, sig_child);

while (!err) {
if ((curr_sd = accept(base_sd, CAST_ADDR(&c_add), &addrlen)) < 0) {

if (errno == EINTR)
continue;

else sys_err("accept failed!");
}
ch = fork();
if (ch == 0) {

do_service(curr_sd);
close(curr_sd);
exit(0);

}
close (curr_sd);

}
close(base_sd);

}

Multi-process servers - II

void sig_child(int signo)
{
pit_t pid;
int stat;

while ((pid = waitpid(-1, &stat, WNOHANG)) > 0)
printf("Il figlio %d ha terminato\n", pid);

}

Multi-process servers - III

When a request arrives, the parent forks a new child and
goes back on doing a new accept;
When the child terminated, a signal SIGCHLD is sent to the
parent

The handler is called which invokes a waitpid to retrieve
the children return codes and avoid zombies

If the signal interrupts the parent while blocked on the
accept, the parent in unblocked and the accept returns with
error.

To understand what kind of error, we look at errno for error
EINTR. In such a case, the parent blocks again on the
accept.

Multi-thread server

void *body(void *arg)
{
int sd = (int) arg;
int i,l;

pthread_detach(pthread_self());
do_service(sd);
close(sd);

}

int main(int argc, char *argv[])
{
pthread_t tid;
struct sockaddr_in c_add;
int base_sd, curr_sd;
int addrlen;
int myport;
int err = 0;

if (argc < 2) user_err("usage: server <port>");
myport = atoi(argv[1]);

base_sd = init_sd(myport);

while (!err) {
curr_sd = accept(base_sd, CAST_ADDR(&c_add), &addrlen);
if (curr_sd < 0) sys_err("accept failed!");
pthread_create(&tid, 0, body, (void *)curr_sd);

}
}

Multi-thread server

To avoid zombie threads, we use pthread_detach to detach
the thread, so that the main does not need to wait with
pthead_join

Multi-thread server

To avoid zombie threads, we use pthread_detach to detach
the thread, so that the main does not need to wait with
pthead_join

In some cases, however, the overhead of creating a new
thread for each request could be considered too high

Multi-thread server

To avoid zombie threads, we use pthread_detach to detach
the thread, so that the main does not need to wait with
pthead_join

In some cases, however, the overhead of creating a new
thread for each request could be considered too high

Another technique consists in creating in advance a certain
number of threads ready to serve requests

Multi-thread server

To avoid zombie threads, we use pthread_detach to detach
the thread, so that the main does not need to wait with
pthead_join

In some cases, however, the overhead of creating a new
thread for each request could be considered too high

Another technique consists in creating in advance a certain
number of threads ready to serve requests

Such threads could call the accept themselves

Multi-thread server

To avoid zombie threads, we use pthread_detach to detach
the thread, so that the main does not need to wait with
pthead_join

In some cases, however, the overhead of creating a new
thread for each request could be considered too high

Another technique consists in creating in advance a certain
number of threads ready to serve requests

Such threads could call the accept themselves

However, it is not possible to block more than one thread
on the same passive socket descriptor with accept!

This is a limitation of Unix

Multi-thread server

To avoid zombie threads, we use pthread_detach to detach
the thread, so that the main does not need to wait with
pthead_join

In some cases, however, the overhead of creating a new
thread for each request could be considered too high

Another technique consists in creating in advance a certain
number of threads ready to serve requests

Such threads could call the accept themselves

However, it is not possible to block more than one thread
on the same passive socket descriptor with accept!

This is a limitation of Unix

We will use an additional mutex.

Pre-created threads

pthread_t tid[MAXNTHREAD];
pthread_mutex_t m_acc;

int init_sd(int myport);
void do_service(int sd);

void *body(void *arg)
{
struct sockaddr_in c_add;
int addrlen;
int i,l;
int base_sd = (int) arg;
int sd;

while (1) {
pthread_mutex_lock(&m_acc);
sd = accept(base_sd, CAST_ADDR(&c_add), &addrlen);
pthread_mutex_unlock(&m_acc);

do_service(sd);
close(sd);

}
}

Pre-created threads

int main(int argc, char *argv[])
{
int i;
int base_sd;
int myport;

if (argc < 2) user_err("usage: server <port>");
myport = atoi(argv[1]);

base_sd = init_sd(myport);
pthread_mutex_init(&m_acc, 0);

for (i=0 ; i<MAXNTHREAD; i++)
pthread_create(&tid[i], 0, body, (void *)base_sd);

pause();
}

	Socket model
	A complete example

	Concurrent servers

