Compito del 24 Settembre 2004

Insegnamento di Sistemi in Tempo Reale Laurea specialistica in Ingegneria dell'Automazione

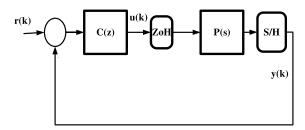


Figura 1: Schema a blocchi di riferimento

1 Esercizio 1

Si consideri lo schema a blocchi in Figura 1, dove $P(s) = \frac{1}{s-1}$, $C(z) = \frac{z+a}{z+b}$, con il S/H funzionante con periodo T.

- 1. Individuare la regione nello spazio [a, b] che garantisce stabilitá;
- 2. Si scelgano i parametri a e b in modo tale che il sistema campionato vada a regime per una risposta a gradino in al più due passi. Si supponga, inoltre, che all'uscita del blocco C(z) si abbia un converitore D-A con una risoluzione di tre cifre decimali dopo la virgola. Dare una stima conservativa del range di valori che può assumere la variabile y a regime in risposta ad un gradino (si supponga che la quantizzazione comporti arrotondamento all'intero più vicino).
- 3. Mostrare un frammento di codice C che realizzi la funzione di controllo di cui al punto precedente.
- 4. Si scelgano ora i parametri a e b in modo che il sistema a ciclo chiuso abbia i poli in 0 e p con |p| < 1. Si supponga di rappresentare in virgola fissa i parametri a e b. Si dia una stima del numero minimo di cifre dopo la virgola necessarie per far sí che i poli a ciclo chiuso restino in un intorno al piú di ampiezza 0.01 rispetto ai valori nominali.

2 Soluzioni Esercizio 1

1. Come prima cosa osserviamo che l'equivalente ZoH P(z) é dato da

$$y(z) = \frac{\alpha}{z - \beta} u(z), \alpha = e^T - 1, \beta = e^T.$$

La funzione a ciclo chiuso é data da

$$y(z) = \frac{P(z)C(z)}{1 + P(z)C(z)}r(z) = \frac{\alpha(z+a)}{z^2 + (b-1)z + \alpha a - \beta b}r(z). \tag{1}$$

L'applicazione del criterio di Jury conduce alle seguenti condizioni:

$$\begin{cases} \alpha a - \beta b < 1\\ \alpha a - (\beta + 1)b > -2\\ \alpha a - (1 - \beta)b > 0 \leftrightarrow a > b. \end{cases}$$

2. Considerando l'equazione 1 si comprende che scegliendo $b=1, a=\beta/\alpha$ la f.d.t. a ciclo chiuso diviene $\frac{1}{z}+\frac{(\beta/\alpha)}{z^2}$ che ha le caratteristiche richieste. Per quanto riguarda la presenza della quantizzazione, essa puó essere considerata in maniera quantitativa come un rumore additivo δq all'uscita del blocco C(z) la cui ampiezza è compresa nell'intervallo [-q/2,q/2] con $q=10^{-3}$. L'uscita è dunque data da:

$$\begin{array}{ll} y(z) & = \frac{P(z)C(z)}{1+P(z)C(z)}r(z) + \frac{P(z)}{1+P(z)C(z)}\delta q(z) \\ & = \frac{\alpha(z+a)}{z^2+(b-1)z+\alpha a-\beta b}r(z) + \frac{\alpha(z+b)}{z^2+(b-1)z+\alpha a-\beta b}\delta q(z) \\ & = \frac{\alpha(z+\beta/\alpha)}{z^2}r(z) + \frac{\alpha(z+1)}{z^2}\delta q(z) \\ & = \alpha((\frac{1}{z}+\frac{\beta/\alpha}{z^2})r(z) + (\frac{1}{z}+\frac{1}{z^2})\delta q(z)), \end{array}$$

da cui è possibile scrivere:

$$y(k) = \alpha(r(k-1) + (\beta/\alpha)r(k-2) + \delta q(k-1) + \delta q(k-2)).$$

Considerando il range di variazione di δq possiamo scrivere:

$$\alpha(1+\beta/\alpha-q) < y_{\infty} < \alpha(1+\beta/\alpha+q).$$

3.

4. Dall'equazione 1 il denominatore della funzione di trasferimento è dato da:

$$P(z, a, b) = z^{2} + (b - 1)z + \alpha a - \beta b.$$

L'assegnamento di poli $\hat{z}_1 = 0$, $\hat{z}_2 = p$ si ottiene scegliendo come valori nominali: $\hat{b} = 1 - p$ e $\hat{a} = \frac{\beta(1-p)}{\alpha}$. A questo punto facciamo un'analisi di sensitività alle piccole variazioni:

$$\begin{split} P(\hat{z}+dz,\hat{a}+da,\hat{b}+db) &\approx P(\hat{z},\hat{a},\hat{b}) + \frac{\partial P}{\partial z}\big|_{z=\hat{z},a=\hat{a},b=\hat{b}} \, dz + \frac{\partial P}{\partial a}\big|_{z=\hat{z},a=\hat{a},b=\hat{b}} \, da + \frac{\partial P}{\partial b}\big|_{z=\hat{z},a=\hat{a},b=\hat{b}} \, db \\ &= P(\hat{z},\hat{a},\hat{b}) + (2\hat{z}-p)dz + \alpha da + (\hat{z}-\beta)db. \end{split}$$

Valutando in \hat{z}_1 e \hat{z}_2 si trova:

$$dz_1 = \frac{\alpha da - \beta db}{p}$$

$$dz_2 = -\frac{\alpha da - \beta db}{p} = -dz1.$$

Scegliendo una rappresentazione con l cifre si ha che $-0.510^{-l} \le da, db \le 0.510^{-l}$. Quindi, nel caso peggiore, avremo:

$$|dz| < 0.510^{-l} \frac{\alpha + \beta}{p}.$$

Quindi:

$$10^{-l} \le 0.01 \frac{p}{\alpha + \beta},$$

 ed

$$l \ge -\log 0.01(\frac{p}{\alpha + \beta}).$$