
Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Laurea Specialistica in Ingegneria
dell'Automazione

Sistemi in Tempo Reale
Giuseppe Lipari

Introduzione alla concorrenza - II

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Processes

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Process
● The fundamental concept in any operating system is the

“process”
– A process is an executing program
– An OS can execute many processes at the same time

(concurrency)
– Example: running a Text Editor and a Web Browser at the same

time in the PC
● Processes have separate memory spaces

– Each process is assigned a private memory space
– One process is not allowed to read or write in the memory space

of another process
– If a process tries to access a memory location not in its space, an

exception is raised (Segmentation fault), and the process is
terminated

– Two processes cannot directly share variables

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Process Control Block
● It contains all the data concerning one process
● All PCBs are stored in the Process Table

PID
PPID
UID

Page table
File Table
Handles
State

Statistics
...

Process Table

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

The role of PCB
● Virtually every routine in the OS will access the PCBs

– The scheduler
– The Virtual memory
– The Virtual File System
– Interrupt handlers (I/O devices)
– ...

● It can only be accessed by the OS!
● The user can access some of the information in the PCB

by using appropriate system calls
● The PCB is a critical point of any OS!

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Memory layout of a Process

Text

Initialized Data

BSS

Stack

Heap

Other data

Contains the process code
(machine code)

Global variables
(initialized)

Global variables
(non initialized)

Stack
(variable size)

Dynamically allocated
memory

(variable size)

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Memory protection
● Every process has its own memory space

– Part of it is “private to the process”
– Part of it can be shared with other processes
– For examples: two processes that are instances of the same

program will probably share the TEXT part
– If two processes want to communicate by shared memory, they

can share a portion of the data segment

Text

Initialized Data

BSS

Stack

Heap

Other data

Initialized Data

Stack

Heap

Other data

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Memory Protection
● By default, two processes cannot share

their memory
– If one process tries to access a memory

location outside its space, a processor
exception is raised (trap) and the
process is terminated

– The famous “Segmentation Fault” error!!

Text

Initialized Data

BSS

Stack

Heap

Other data

Any reference to this
memory results in a
segmentation fault

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Processes and Threads

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Processes
● We can distinguish two aspects in a process
● Resource Ownership

– A process includes a virtual address space, a process image
(code + data)

– It is allocated a set of resources, like file descriptors, I/O
channels, etc

● Scheduling/Execution
– The execution of a process follows an ececution path, and

generates a trace (sequence of internal states)
– It has a state (ready, Running, etc.)
– And scheduling parameters (priority, time left in the round, etc.)

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Multi-threading
● Many OS separate these aspects, by providing

the concept of thread
● The process is the “resource owner”
● The thread is the “scheduling entity”

– One process can consists of one or more threads
– Threads are sometime called (improperly) lightweight

processes
– Therefore, on process can have many different (and

concurrent) traces of execution!

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Single threaded Process Model
● In the single-threaded process

model one process has only
one thread
– One address space
– One stack
– One PCB only

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Multi-threaded process model
● In the multi-threaded

process model each
process can have many
threads
– One address space
– One PCB
– Many stacks
– Many TCB (Thread

Control blocks)
– The threads are

scheduled directly by the
global scheduler

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Threads
● Generally, processes do not share memory

– To communicate between process, it is necessary to
user OS primitives

– Process switch is more complex because we have to
change address space

● Two threads in the same process share the
same address space
– They can access the same variables in memory
– Communication between threads is simpler
– Thread switch has less overhead

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Processes vs. Threads
● Processes are mainly used to compete for some

resource
– For example, two different users run two separate applications

that need to print a file
– The printer is a shared resource, the two processes compete for

the printer
● Threads are mainly used to collaborate to some goal

– For example, one complex calculation can be split in two parallel
phases, each thread does one phase

– In a multi-processor machine the two threads go in parallel and
the calculation becomes faster

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

1. wait

Example - I
 Consider a Word Processor application
 Main cycle

1. Wait for input from the keyboard
2. Update the document
3. Format the document
4. Check for syntax errors
5. Check for other events (i.e. temporary save)
6. Return to 1

 One single process would be a waste of time!

2. update

3. format

4. syntax

5. Other
events

1. wait

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Example - II
● Problems

– Most of the time, the program waits for input
● Idea, while waiting we could perform some other task

– Activities 3 and 4 (formatting and syntax checking) are very time
consuming

● Idea: let’s do them while waiting for input
● Solution with multiple processes

– One process waits for input
– Another process periodically formats the document
– A third process periodically performs a syntax checking
– A fourth process visualize the document

Input
Process

Format
Process

Syntax
Process

Graphic
Process

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Example - III
● Problem with multiple processes

– All processes needs to access the same data
structure, the document

– Which process holds the data structure?
– Solution 1: message passing

● A dedicated process holds the data, all the others
communicate with it to read/update the data

● Very inefficient!

Input
Process

Format
Process

Syntax
Process

Graphic
Process

Data
Server

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Example - IV
● Another solution...

– Solution 2: shared memory
● One process holds the data and makes that part of its

memory shareable with the others
– Still not very efficient:

● We have a lot of process switches
● Memory handling becomes very complex

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Why using threads
● Speed of creation

– Creating a thread takes far less time than creating a process
● Speed of switching

– Thread switch is faster than process switch
● Shared memory

– Threads of the same process run in the same memory space
– They can naturally access the same data!

Input
Thread

Format
Thread

Syntax
Thread

Graphic
Thread

DocumentProcess

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Threads support in OS
● Different OS implement threads in different ways

– Some OS supports directly only processes
● Threads are implemented as “special processes”

– Some OS supports only threads
● Processes are threads’ groups

– Some OS natively supports both concepts
● For example Windows NT

● In Real-Time Operating Systems
– Depending on the size and type of system we can

have both threads and processes or only threads
– For efficiency reasons, most RTOS only support

● 1 process
● Many threads inside the process
● All threads share the same memory

– Examples are RTAI, RT-Linux, Shark, some version of
VxWorks, QNX, etc.

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Summary
● Important concepts

– Process: provides the abstraction of memory space
– Threads: provide the abstraction of execution trace
– The scheduler manages threads!

● Processes do not normally share memory
● Two threads of the same process share memory
● We need to explore all the different ways in which two

threads can communicate
– Shared memory
– Message passing

● In the next section we will only refer to threads

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Scheduling and context switch

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

The thread control block

● In a OS that supports threads
– Each thread is assigned a TCB (Thread Control Block)
– The PCB holds mainly information about memory
– The TCB holds information about the state of the thread

TID
PID
CR
IP
SP

Other Reg.
State

Priority
Time left

...

Thread Table

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Thread states
● The OS can execute many threads at the same time

● Each thread, during its lifetime can be in one of the
following states
– Starting (the thread is being created)
– Ready (the thread is ready to be executed)
– Executing (the thread is executing)
– Blocked (the thread is waiting on a condition)
– Terminating (the thread is about to terminate)

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Thread states
a) Creation The thread is created
b) Dispatch The thread is selected to execute
c) Preemption The thread leaves the processor
d) Wait on condition The thread is blocked on a condition
e) Condition true The thread is unblocked
f) Exit The thread terminates

Start Ready Running

TerminateBlocked

a
b

c

de f

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Thread queues
● Single processor

CPU

Ready queue
Admit

Preemption

Dispatch

Blocked queue

Wait conditionEvent occurs

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Multiple blocking queues

CPU

Ready queue
Admit

Preemption

Dispatch

Wait condition 1Event occurs

Wait condition 2Event occurs

Wait condition 3Event occurs

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Modes of operation (revised)
● Every modern processor supports at least 2 modes of

operation
– User
– Supervisor
– The Control Register (CR) contains one bit that tells us in which

mode the processor is running
● Operating system routines run in supervisor mode

– They need to operate freely on every part of the hardware with
no restriction

– User code runs into user mode
● Mode switch

– Every time we go from user to supervisor mode or viceversa

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Mode switch
● It can happen in one of the following cases

– Interrupts or traps
● In this case, before calling the interrupt handler, the processor goes

in supervisor mode and disables interrupts
● Traps are interrupts that are raised when a critical error occurs (for

example, division by zero, or page fault)
● Returning from the interrupt restores the previous mode

– Invoking a special instruction
● In the Intel family, it is the INT instruction
● This instruction is similar to an interrupt
● It takes a number that identifies a “service”
● All OS calls are invoked by calling INT
● Returning from the handler restores the previous mode

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

• Saves parameters on the stack
• Executes INT 20h

1. Change to supervisor mode
2. Save context
3. Execute the function open
4. Restores the context
5. IRET

• Back to user mode
• Delete parameters from the stack

Example of system call

● The “open” system call
can potentially block the
thread!

● In that case we have a
“context switch”

int fd,n;
char buff[100];

fd = open(“Dummy.txt”, O_RDONLY);
n = read(fd, buff, 100);

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Context switch
● It happens when

– The thread has been “preempted” by another higher priority
thread

– The thread blocks on some condition
– In time-sharing systems, the thread has completed its “round”

and it is the turn of some other thread
● We must be able to restore the thread later

– Therefore we must save its state before switching to another
thread

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

The “exec” pointer
● Every OS has one pointer (“exec”) to the TCB of

the running thread
– The status of the “exec” thread is RUNNING

● When a context switch occurs,
– The status of the “exec” thread is changed to

BLOCKING or READY
– The scheduler is called
– The scheduler selects another “exec” from the ready

queue

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

System call with context switch
● Saves parameters on stack
● INT 20h

– Change to supervisor mode
– Save context in the TCB of “exec” (including SP)
– Execute the code

● The thread change status and goes into BLOCKING mode
– Calls the scheduler

● Moves “exec” into the blocking queue
● Selects another thread to go into RUNNING mode
● Now exec points to the new process

– Restores the context of “exec” (including SP)
● This changes the stack

– IRET
● Returns to where the new thread was interrupted

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Stacks

exec

Param.
CR
IP

PID
PPID
CR
IP
SP

Other Reg.
State

Priority
Time left

...

TCB
Stack

CR
IP
SP

Other Reg.

Param.
CR
IP

CR
IP
SP

Other Reg.
State

Priority
Time left

...

TCB
Stack

Blocking Blockingexec

CR
IP
SP

Other Reg.

TID
PID

PID
PPID
TID
PID

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Context switch
● This is only an example

– Every OS has little variations on the same theme
– For example, in most cases, registers are saved on

the stack, not on the TCB
● You can try to look into some real OS

– Linux
– Free BSD
– Shark (http://shark.sssup.it)
– Every OS is different!

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Time sharing systems
● In time sharing systems,

– Every thread can execute for maximum one round
● For example, 10msec

– At the end of the round, the processor is given to
another thread

Context
Switch

CPU

Ready queue

CPUCPUCPU

Timer
interrupt

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Interrupt with context switch
● It is very similar to the INT with context switch

– An interrupt arrives
– Change to supervisor mode
– Save CR and IP
– Save processor context
– Execute the interrupt handler
– Call the scheduler

● This may change the “exec” pointer
– IRET

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Causes for a context switch
● A context switch can be

– Voluntary: the thread calls a blocking primitive, i.e. it
executes an INT

● For example, by calling a read() on a blocking device
– Non-voluntary: an interrupt arrives that causes the

context switch
● It can be the timer interrupt , in time-sharing systems
● It can be an I/O device which unblocks a blocked

process with a higher priority
● Context switch and mode switch

– Every context switch implies a mode switch
– Not every mode switch implies a context switch

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Esercizio

● Considerate il seguente task

Ipotesi di lavoro
– processore a 32 bit
– Int = 4 bytes
– Double = 8 bytes
– Char = 1 byte

void *threadA(void *arg)
{

int i;
double s = *((double *) arg);
double vect[3];
for (i=0; i<3; i++) vect[i] = 0;
while (1) {

multiply(vect);
if (length(vect) >s) normalize(vect);
task_endcycle();

}
}

double mat[3][3];

void multiply(double v[])
{
 int i,j;
 double ris[3];
 for(i=0; i<3; i++) {
 ris[i] = 0;
 for (j=0; j<3; j++) ris[i] += mat[i][j] * v[i];
 }
 for (i=0; i<3; i++) v[i] = ris[i];
 return;
}

double length(double v[])
{
 return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}

void normalize(double v[])
{
 int i;
 double l = length(v);
 for (i=0; i<3; i++) v[i] /= l;
 return;
}

Date: 3/03/2005 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Esercizio

● Domande:
– Disegnare la struttura dello stack e calcolare la sua

dimensione in byte
– Descrivere cosa succede quando arriva una interruzione
– In un sistema time sharing, descrivere cosa succede

quando il quanto di esecuzione del thread è terminato

