
Laurea Specialistica in Ingegneria
dell'Automazione

Sistemi in Tempo Reale
Giuseppe Lipari

Introduzione alla concorrenza - III

2

the need for concurrency

 there are many reason for concurrency
 functional
 performance
 expressive power

 functional
 many users may be connected to the same system at the same

time
 each user can have its own processes that execute concurrently with

the processes of the other users
 perform many operations concurrently

 for example, listen to music, write with a word processor, burn a CD,
etc...

 they are all different and independent activities
 they can be done “at the same time”

3

the need for concurrency (2)

 performance
 take advantage of blocking time

 while some thread waits for a blocking condition, another thread
performs another operation

 parallelism in multi-processor machines
 if we have a multi-processor machine, independent activities can be

carried out on different processors are the same time
 expressive power

 many control application are inherently concurrent
 concurrency support helps in expressing concurrency, making

application development simpler

4

theoretical model

 a system is a set of concurrent activities
 they can be processes or threads

 they interact in two ways
 they access the hardware resources

 processor
 disk
 memory, etc.

 they exchange data
 these activities compete for the resources and/or

cooperate for some common objective

5

resource

 a resource can be
 a HW resource like a I/O device
 a SW resource, i.e. a data structure
 in both cases, access to a resource must be regulated to avoid

interference
 example 1

 if two processes want to print on the same printer, their access
must be sequentialised, otherwise the two printing could be
intermangled!

 example 2
 if two threads access the same data structure, the operation on the

data must be sequentialized otherwise the data could be
inconsistent!

6

interaction model

 activities can interact according to two fundamental
models
 shared memory

 All activities access the same memory space
 message passing

 All activities communicate each other by sending messages through
OS primitives

 we will analize both models in the following slides

7

cooperative vs competitive

the interaction between concurrent activities (threads
or processes) can be classified into:

 competitive concurrency
 different activities compete for the resources
 one activity does not know anything about the other
 the OS must manage the resources so to

 avoid conflicts
 be fair

 cooperative concurrency
 many activities cooperate to perform an operation
 every activity knows about the others
 they must synchronize on particular events

 interference

8

competition

 cooperative and competitive activities need different
models of execution and synchronization
 competing activities need to be “protected” from each other

 separate memory spaces
 the process model is the best

 the allocation of the resource and the synchronization must
be centralized

 competitive activities requests for services to a central
manager (the OS or some dedicated process) which allocates
the resources in a fair way

 Client/Server model
 communication is usually done through messages

 the process model of execution is the best one

9

competition (2)

 in a client/server system
 a server manages the resource exclusively

 for example, the printer
 if a process needs to access the resource, it sends a request to

the server
 for example, printing a file, or asking for the status

 the server can send back the responses
 the server can also be on a remote system

 two basic primitives
 send and receive

Client 1

Client 2

Server

10

cooperation

 cooperative activities know about each other
 they do not need memory protection

 not using memory protection, we have less overhead
 they need to access the same data structures
 allocation of the resource is de-centralized
 shared memory is the best model
 the thread model of execution is the best one

11

cooperation and competion

 competion is best resolved by using
the message passing model
 however it can be implemented using a shared memory paradigm

too
 cooperation is best implemented by using

the shared memory paradigm
 however, it can be realized by using pure message passing

mechanisms
 shared memory or message passing?

 in the past, there were OS that supported only shared memory or
only message passing

12

cooperation and competion (2)

 a general purpouse OS needs to support both models
 we need at least protection for competing activities
 we need to support client/server models. So we need message

passing primitives
 we need to support shared memory for reducing the overhead

 some special OS supports only one of the two
 for example, many RTOS support only shared memory

13

interference
 there is a third kind of interaction, that is interference,

due to one of the following programming errors:
 interactions between processes that are not required by the

semantic of the problem
 erroneous solution to the problems of interaction

 interference problems are usually time-dependent
problems

models of concurrency: shared memory

15

shared memory

 shared memory communication
 it was the first one to be supported in old OS
 it is the simplest one and the closest to the machine
 all threads can access the same memory locations

Thread 1 Thread 2 Thread 3

Shared memory

16

resource allocation

 allocation of resource can be
 static: once the resource is granted, it is never revoked
 dynamic: resource can be granted and revoked dynamically

 manager
 access to a resource can be

 dedicated: one activity at time only is granted access to the
resource

 shared: many activity can access the resource at the same time
 mutual exclusion

Dedicated Shared

Static

Dynamic

Compile
Time

Manager

ManagerManager

17

mutual exclusion problem

 we do not know in advance the relative speed of the
processes
 hence, we do not know the order of execution of the hardware

instructions

 recall the example of incrementing variable x
 incrementing x is not an atomic operation
 atomic behavior can be obtained using interrupt disabling or

special atomic instructions

18

example 1

 bad interleaving:

...
LD R0, x TA x = 0
LD R0, x TB x = 0
INC R0 TB x = 0
ST x, R0 TB x = 1
INC R0 TA x = 1
ST x, R0 TA x = 1
...

int x ;

shared memory void *threadA(void *)
{

...;
x = x + 1;
...;

}

void *threadB(void *)
{

...;
x = x + 1;
...;

}

19

consistency:
after each
operation,
a == b

example 2

 bad interleaving

class A {
int a;
int b;

public:
A() : a(1), b(1) {};
void inc() { a = a + 1; b = b +1; }
void double() { b = b * 2; a = a * 2;}

} obj;

Shared object (sw resource)
void * threadA(void *)
{

...
obj.inc();
...

}

void * threadB(void *)
{

...
obj.double();
...

}

resource in a
non-consistent
state!

a = a + 1; TA a = 2
b = b * 2; TB b = 2
b = b + 1; TA b = 3
a = a * 2; TB a = 4

20

consistency

 for each resource, we can state some consistency
property
 a consistency property Ci is a boolean expression on the values of

the internal variables
 a consistency property must hold before and after each operation
 it does not hold during an operation
 if the operations are properly sequentialized, the consistency

properties must hold
 formal verification

 let R be a resource, and let C(R) be a set of consistency properties
on the resource

 C(R) = { Ci }

Definition: a concurrent program is correct if, for every possible
interleaving of the operations on the resource, the consistency
properties hold after each operation

21

example 3: circular array

class CircularArray {
int array[10];
int head, tail, num;

public:
CircularArray() : head(0),

tail(0), num(0) {}

bool insert(int elem) {
if (num == 10) return false;
array[head] = elem;
head = (head + 1) % 10;
num ++;
return true;

}
bool extract(int &elem) {

if (num == 0) return false;
elem = array[tail];
tail = (tail + 1) % 10;
num - -;
return true;

}
} queue;

consistency properties

(suppose num++ and num-- atomic)

C1: if (num == 0 || num == 10)
head == tail;

C2: if (0 < num < 10)
num == (head – tail) % 10

C3: num == NI - NE

C4: (insert x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

C5: (extract &x)
pre: if (num > 0)
post: num == num –1 &&

x = array[(tail-1)%10];

22

C2, C3, C4

hold

head = 1
tail = 0

num = 1
head = 0
tail = 0

num = 0

example 3: circular array - insert

Initial state:

head = 0; tail = 0; num = 0;

queue.insert (5) ;

5

head = 1; tail = 0; num = 1;

C2: if (0 < num < 10)
num == (head – tail) % 10

C3: num == NI – NE

C4: (insert x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

23

tail
head

example 3: circular array – insert (2)

queue. insert (3) ;

5 3 Initial state:

head = 0; tail = 0; num = 0;

queue.insert (5) ;

head = 1; tail = 0; num = 1;

head = 2; tail = 0; num = 2;

C2, C3, C4

hold

C2: if (0 < num < 10)
num == (head – tail) % 10

C3: num == NI – NE

C4: (insert x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

24

example 3: circular array – insert (3)

tail
head

1 3 7 4 Initial state:

head = 9; tail = 5; num = 4;

queue. insert (6) ;

head = 0; tail = 5; num = 5
head

C2, C3, C4

hold
C2: if (0 < num < 10)

num == (head – tail) % 10

C3: num == NI – NE

C4: (insert x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

6

25

example 3: circular array – extract

7 4 6 Initial state:

head = 0; tail = 5; num = 0;

tail

head

queue. extract (int &elem) ;

head = 0; tail = 6; num = 4

tail

1 31

C2, C3, C5

hold
C2: if (0 < num < 10)

num == (head – tail) % 10

C3: num == NI – NE

C5: (extract &x)
pre: if (num > 0)
post: num == num –1

x = array[(tail-1)%10];

26

example 3: the problem

 if the insert operation is performed by two processes,
some consistency property may be violated!

void *threadA(void *)
{

...
queue.insert(5);
...

}

void *threadB(void *)
{

...
queue.insert(2);
...

}

CircularArray queue;

7 46 3

27

example 3: interference

7 46 3

Initial state:

head = 7; tail = 3; num = 4;

queue. insert (5) ; (TA)

if (num == 10) return false;
array[head] = 5;
head = (head + 1) % 10; (**)
num ++;
return true;

queue. insert (2) ; (TB)

if (num == 10) return false;
array[head] = 2;
head = (head + 1) % 10; (*)
num ++;
return true;

if (num == 10) return false; (TA)
array[head] = 5; (TA)
if (num == 10) return false; (TB)
array[head] = 2; (TB)
head = (head + 1) % 10; (TB) (*)
num ++; (TB)
return true; (TB)
head = (head + 1) % 10; (TA) (**)
num ++; (TA)
return true; (TA)

5

Final State:

head = 9; tail = 3; num = 6;

2 head (**)

head (*)

C 4 is violated!

5 != array[head – 1]

28

example 3: correctness

 the previous program is not correct
 it exist a possible interleaving of two insert operations that leaves

the resource in a inconsistent state
 proving the non-correctness is easy

 it suffices to find a counter example
 proving the correctness is not easy

 it is necessary to prove the correctness for every possible
interleaving of every operation

29

example 3: problem

 what if an insert and an extract are interleaved?
 nothing bad can happen!!
 proof

 if 0<num<10, insert() and extract() are independent
 if num==0

 if extract begins before insert, it immediately returns false, so nothing bad
can happen

 if insert begins before, extract will still return false, so it cannot interfere
with insert

 same thing when num==10
 question: what happens if we exchange the sequence of

instructions in insert or extract?

30

example 3: CircularArray properties

 a) if more than one thread executes queue.insert()
 inconsistency!!

 b) if we have only two threads
 one threads calls queue.insert() and the other thread calls

queue.extract()
 no inconsistency!

 the order of the operations is important!
 a wrong order can make the object inconsistency even under the

assumption b)
 the case is when num is incremented but the data has not yet been

inserted
 in any case, the final result depends on the timings of the different

requests (e.g, an insertion when the buffer is full)

31

example 3: questions

 problem:
 in the previous example, we supposed that num++ and num-- are

atomic operations
 what happens if they are not atomic?

 question:
 assuming that operation -- and ++ are not atomic, can we make

the circularArray safe under the assumption b) ?
 hint: try to substitute variable num with two boolean variables,

bool empty and bool full;

32

critical sections

 definitions
 the shared object where the conflict may happen is a “resource”
 the parts of the code where the problem may happen are called

“critical sections”
 a critical section is a sequence of operations that cannot be

interleaved with other operations on the same resource
 two critical sections on the same resource must be properly

sequentialized
 we say that two critical sections on the same resource must

execute in MUTUAL EXCLUSION
 there are three ways to obtain mutual exclusion

 implementing the critical section as an atomic operation
 disabling the preemption (system-wide)
 selectively disabling the preemption (using semaphores and mutual

exclusion)

33

critical sections: atomic operations

 in single processor systems
 disable interrupts during a critical section

 problems:
 if the critical section is long, no interrupt can arrive during the

critical section
 consider a timer interrupt that arrives every 1 msec.
 if a critical section lasts for more than 1 msec, a timer interrupt could

be lost!
 Non voluntary context switch is disabled during the critical section!

 we must avoid conflicts on the resource, not disabling interrupts!

34

critical sections: atomic operations (2)

 multi-processor
 define a flag s for each resource
 use lock(s)/unlock(s) around the critical section

 problems:
 busy waiting: if the critical section is long, we waste a lot of time
 cannot be used in single processors!

int s;
...
lock(s);
<critical section>
unlock(s);
...

35

critical sections: disabling preemption

 single processor systems
 in some scheduler, it is possible to disable preemption for a limited

interval of time
 problems:

 if a high priority critical thread needs to execute, it cannot make
preemption and it is delayed

 even if the high priority task does not access the resource!

<disable preemption>
<critical section>
<enable preemption>

no context
switch may happen
during the critical

section but interrupts are
enabled

36

critical sections: selectively dis. preemption

 there exist some general mechanisms to implement
mutual exclusion only between the tasks that uses the
resource.
 semaphores
 mutexes

37

synchronisation

 mutual exclusion is not the only problem
 we need a way of synchronise two or more threads

 example: producer/consumer
 suppose we have two threads,

 one produces some integers and sends them to another thread
(PRODUCER)

 another one takes the integer and elaborates it (CONSUMER)

Producer Consumer

38

producer/consumer

 the two threads have different speeds
 for example the producer is much faster than the consumer
 we need to store the integers in a queue, so that no data is

lost
 let’s use the CircularArray class

39

producer/consumer (2)

 problems with this approach:
 if the queue is full, the producer actively waits
 if the queue is empty, the consumer actively waits

void *producer(void *)
{

bool res;
int data;
while(1) {

<obtain data>
while (!queue.insert(data));

}
}

void *consumer(void *)
{

bool res;
int data;
while(1) {

while (!queue.extract(&data));
<use data>

}
}

CircularArray queue;

40

a more general approach

 we need to provide a general mechanism for
synchonisation and mutual exclusion

 requirements
 provide mutual exclusion between critical sections

 avoid two interleaved insert operations
 (semaphores, mutexes)

 synchronise two threads on one condition
 for example, block the producer when the queue is full
 (semaphores, condition variables)

41

general mechanism: semaphores

 Djikstra proposed the semaphore mechanism
 a semaphore is an abstract entity that consists of

 a counter
 a blocking queue
 operation wait
 operation signal

 the operations on a semaphore must be atomic

42

semaphores

 semaphores are a basic mechanisms for providing
synchronization
 it has been shown that every kind of synchronization and mutual

exclusion can be implemented by using sempahores
 we will analyze possible implementation of the semaphore

mechanism later

class Semaphore {
<blocked queue> blocked;
int counter;

public:
Semaphore (int n) : count (n) {...}
void wait();
void signal();

};

43

wait and signal

 a wait operation has the following behavior
 if counter == 0, the requiring thread is blocked

 it is removed from the ready queue
 it is inserted in the blocked queue

 if counter > 0, then counter--;
 a signal operation has the following behavior

 if counter == 0 and there is some blocked thread, unblock it
 the thread is removed from the blocked queue
 it is inserted in the ready queue

 otherwise, increment counter

44

semaphores

class Semaphore {
<blocked queue> blocked;
int count;

public:
Semaphore (int n) : count (n) {...}
void wait() {

if (counter == 0)
<block the thread>

else counter--;
}
void signal() {

if (<some blocked thread>)
<unblock the thread>

else counter++;
}

};

45

signal semantics

 what happens when a thread blocks on a semaphore?
 in general, it is inserted in a BLOCKED queue

 extraction from the blocking queue can follow different
semantics:
 strong semaphore

 the threads are removed in well-specified order
 for example, the FIFO order is the fairest policy, priority based

ordering, ...
 signal and suspend

 after the new thread has been unblocked, a thread switch happens
 signal and continue

 after the new thread has been unblocked, the thread that executed the
signal continues to execute

 concurrent programs should not rely too much on the
semaphore semantic

46

mutual exclusion with semaphores

 how to use a semaphore for critical sections
 define a semaphore initialized to 1
 before entering the critical section, perform a wait
 after leaving the critical section, perform a signal

Semaphore s(1);

void *threadA(void *)
{

...
s.wait();
 <critical section>
s.signal();
...

}

void *threadB(void *)
{

...
s.wait();
 <critical section>
s.signal();
...

}

47

mutual exclusion with semaphores (2)

semaphore

counter 10

s.wait(); (TA)
<critical section (1)> (TA)
s.wait() (TB)
<critical section (2)> (TA)
s.signal() (TA)
<critical section> (TB)
s.signal() (TB)

1

48

synchronization
 how to use a semaphore for synchronization

 define a semaphore initialized to 0
 at the synchronization point, perform a wait
 when the synchronization point is reached, perform a signal
 in the example, threadA blocks until threadB wakes it up

Semaphore s(0);

void *threadA(void *)
{

...
s.wait();
...

}

void *threadB(void *)
{

...
s.signal();
...

}

 how can both A and B synchronize on the same instructions?

49

producer/consumer

 consider a producer/consumer system
 one producer executes queue.insert()

 we want the producer to be blocked when the queue is full
 the producer will be unblocked when there is some space again

 one consumer executes queue.extract
 we want the consumer to be blocked when the queue is empty
 the consumer will be unblocked when there is some space again

 first attempt: one producer and one consumer only

50

producer/consumer (2)

class CircularArray {
int array[10];
int head, tail;
Semaphore empty, full;

public:
CircularArray() : head(0), tail(0),

empty(0), full(10) {}
void insert(int elem) {

wait(full);
 array[head] = elem;
 head = (head + 1) % 10;
signal(empty);

}
void extract(int &elem) {

wait(empty);
 elem = array[tail];
 tail = (tail + 1) % 10;
signal(full);

}
} queue;

Note: there is no member
called num as in the example
3 (slide 22)!!!

51

producer/consumer: properties

 notice that
 the value of the counter of empty is the number of elements in the

queue
 it is the number of times we can call extract without blocking

 the value of the counter of full is the complement of the elements
in the queue

 it is the number of times we can call insert without blocking

 exercise
 prove that the implementation is correct

 insert() never overwrites elements
 extract() always gets an element of the queue

52

producers/consumers

 now let’s combine mutual exclusion and synchronization
 consider a system in which there are

 many producers
 many consumers

 we want to implement synchronization
 we want to protect the data structure

53

producers/consumers: does it work?

class CircularArray {
int array[10];
int head, tail;
Semaphore full, empty;
Semaphore mutex;

public:
CircularArray() : head(0), tail(0),

empty(0), full(10), mutex(1) {}
void insert(int elem);
void extract(int &elem);

} queue;

void CircularArray::insert(int elem)
{

mutex.wait();
 full.wait();
 array[head]=elem;
 head = (head+1)%10;
 empty.signal();
mutex.signal();

}

void CircularArray::extract(int &elem)
{

mutex.wait();
 empty.wait();
 elem = array[tail];
 tail = (tail+1)%10;
 full.signal();
mutex.signal();

}

54

producers/consumers: correct solution

class CircularArray {
int array[10];
int head, tail;
Semaphore full, empty;
Semaphore mutex;

public:
CircularArray() : head(0), tail(0),

empty(0), full(10), mutex(1) {}
void insert(int elem);
void extract(int &elem);

} queue;

void CircularArray::insert(int elem)
{

full.wait();
 mutex.wait();
 array[head]=elem;
 head = (head+1)%10;
 mutex.signal();
empty.signal();

}

void CircularArray::extract(int &elem)
{

empty.wait();
 mutex.wait();
 elem = array[tail];
 tail = (tail+1)%10;
 mutex.signal();
full.signal();

}

55

producers/consumers: deadlock situation

 deadlock situation
 a thread executes mutex.wait() and then blocks on a

synchronisation semaphore
 to be unblocked another thread must enter a critical section

guarded by the same mutex semaphore!
 so, the first thread cannot be unblocked and free the mutex!
 the situation cannot be solved, and the two threads will never

proceeds
 as a rule, never insert a blocking synchronization inside a

critical section!!!

56

semaphore implementation

 system calls
 wait() and signal() involve a possible thread-switch
 therefore they must be implemented as system calls!

 one blocked thread must be removed from state RUNNING and be
moved in the semaphore blocking queue

 protection:
 a semaphore is itself a shared resource
 wait() and signal() are critical sections!
 they must run with interrupt disabled and

by using lock() and unlock() primitives

57

semaphore implementation (2)

void Semaphore::wait()
{

spin_lock_irqsave();
if (counter==0) {

<block the thread>
schedule();

} else counter--;
spin_lock_irqrestore();

}

void Semaphore::signal()
{

spin_lock_irqsave();
if (counter== 0) {

<unblock a thread>
schedule();

} else counter++;
spin_lock_irqrestore();

}

