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the need for concurrency

 there are many reason for concurrency
 functional
 performance
 expressive power

 functional
 many users may be connected to the same system at the same 

time
 each user can have its own processes that execute concurrently with 

the processes of the other users
 perform many operations concurrently

 for example, listen to music, write with a word processor, burn a CD, 
etc...

 they are all different and independent activities
 they can be done “at the same time”
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the need for concurrency (2)

 performance
 take advantage of blocking time

 while some thread waits for a blocking condition, another thread 
performs another operation

 parallelism in multi-processor machines
 if we have a multi-processor machine, independent activities can be 

carried out on different processors are the same time
 expressive power

 many control application are inherently concurrent
 concurrency support helps in expressing concurrency, making 

application development simpler
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theoretical model

 a system is a set of concurrent activities
 they can be processes or threads

 they interact in two ways
 they access the hardware resources 

 processor
 disk
 memory, etc.

 they exchange data
 these activities compete for the resources and/or 

cooperate for some common objective



5

resource

 a resource can be
 a HW resource like a I/O device
 a SW resource, i.e. a data structure
 in both cases, access to a resource must be regulated to avoid 

interference
 example 1

 if two processes want to print on the same printer, their access 
must be sequentialised, otherwise the two printing could be 
intermangled!

 example 2
 if two threads access the same data structure, the operation on the 

data must be sequentialized otherwise the data could be 
inconsistent!



6

interaction model

 activities can interact according to two fundamental 
models
 shared memory

 All activities access the same memory space
 message passing

 All activities communicate each other by sending messages through 
OS primitives

 we will analize both models in the following slides
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cooperative vs competitive

the interaction between concurrent activities (threads 
or processes) can be classified into:

 competitive concurrency
 different activities compete for the resources
 one activity does not know anything about the other
 the OS must manage the resources so to 

 avoid conflicts
 be fair

 cooperative concurrency
 many activities cooperate to perform an operation
 every activity knows about the others
 they must synchronize on particular events

 interference
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competition

 cooperative and competitive activities need different 
models of execution and synchronization
 competing activities need to be “protected” from each other

 separate memory spaces
 the process model is the best

 the allocation of the resource and the synchronization must 
be centralized

 competitive activities requests for services to a central 
manager (the OS or some dedicated process) which allocates 
the resources in a fair way

 Client/Server model
 communication is usually done through messages

 the process model of execution is the best one
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competition (2)

 in a client/server system
 a server manages the resource exclusively

 for example, the printer
 if a process needs to access the resource, it sends a request to 

the server
 for example, printing a file, or asking for the status

 the server can send back the responses
 the server can also be on a remote system

 two basic primitives
 send and receive

Client 1

Client 2

Server
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cooperation

 cooperative activities know about each other
 they do not need memory protection

 not using memory protection, we have less overhead
 they need to access the same data structures
 allocation of the resource is de-centralized
 shared memory is the best model
 the thread model of execution is the best one
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cooperation and competion

 competion is best resolved by using 
the message passing model
 however it can be implemented using a shared memory paradigm 

too
 cooperation is best implemented by using 

the shared memory paradigm
 however, it can be realized by using pure message passing 

mechanisms
 shared memory or message passing?

 in the past, there were OS that supported only shared memory or 
only message passing
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cooperation and competion (2)

 a general purpouse OS needs to support both models 
 we need at least protection for competing activities
 we need to support client/server models. So we need message 

passing primitives
 we need to support shared memory for reducing the overhead

 some special OS supports only one of the two
 for example, many RTOS support only shared memory
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interference
 there is a third kind of interaction, that is interference, 

due to one of the following programming errors:
 interactions between processes that are not required by the 

semantic of the problem
 erroneous solution to the problems of interaction

 interference problems are usually time-dependent 
problems



models of concurrency: shared memory
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shared memory

 shared memory communication
 it was the first one to be supported in old OS
 it is the simplest one and the closest to the machine
 all threads can access the same memory locations

Thread 1 Thread 2 Thread 3

Shared memory
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resource allocation

 allocation of resource can be 
 static: once the resource is granted, it is never revoked
 dynamic: resource can be granted and revoked dynamically

 manager
 access to a resource can be

 dedicated: one activity at time only is granted access to the 
resource

 shared: many activity can access the resource at the same time
 mutual exclusion

Dedicated Shared

Static

Dynamic

Compile
Time

Manager

ManagerManager
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mutual exclusion problem

 we do not know in advance the relative speed of the 
processes
 hence, we do not know the order of execution of the hardware 

instructions

 recall the example of incrementing variable x
 incrementing x is not an atomic operation
 atomic behavior can be obtained using interrupt disabling or 

special atomic instructions
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example 1

 bad interleaving:

...
LD R0, x TA x = 0
LD R0, x TB x = 0
INC R0 TB x = 0
ST x, R0 TB x = 1
INC R0 TA x = 1
ST x, R0 TA x = 1
...

int x ;

shared memory void *threadA(void *)
{

...;
x = x + 1;
...;

}

void *threadB(void *)
{

...;
x = x + 1;
...;

}
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consistency: 
after each 
operation, 
a == b

example 2

 bad interleaving

class A {
int a;
int b;

public:
A() : a(1), b(1) {};
void inc() { a = a + 1; b = b +1; }
void double() { b = b * 2; a = a * 2;}

} obj; 

Shared object (sw resource)
void * threadA(void *)
{

...
obj.inc();
...

}

void * threadB(void *)
{

...
obj.double();
...

}

resource in a 
non-consistent 
state!

a = a + 1; TA a = 2
b = b * 2; TB b = 2
b = b + 1; TA b = 3
a = a * 2; TB a = 4
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consistency

 for each resource, we can state some consistency 
property
 a consistency property Ci is a boolean expression on the values of 

the internal variables
 a consistency property must hold before and after each operation
 it does not hold during an operation
 if the operations are properly sequentialized, the consistency 

properties must hold
 formal verification

 let R be a resource, and let C(R) be a set of consistency properties 
on the resource

 C(R) = { Ci }

Definition: a concurrent program is correct if, for every possible 
interleaving of the operations on the resource, the consistency 
properties hold after each operation
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example 3: circular array

class CircularArray {
int array[10];
int head, tail, num;

public:
CircularArray() : head(0), 

tail(0), num(0) {}

bool insert(int elem) {
if (num == 10) return false;
array[head] = elem;
head = (head + 1) % 10;
num ++;
return true;

}
bool extract(int &elem) {

if (num == 0) return false;
elem = array[tail];
tail = (tail + 1) % 10;
num - -;
return true;

}
} queue;

consistency properties

(suppose num++ and num-- atomic)

C1: if (num == 0 || num == 10) 
head == tail;

C2: if (0 < num < 10) 
num == (head – tail) % 10

C3: num == NI - NE

C4: (insert x)
pre: if (num < 10) 
post: num == num + 1 &&

array[(head-1)%10] = x;

C5: (extract &x) 
pre: if (num > 0)
post: num == num –1  &&

x = array[(tail-1)%10];



22

C2, C3, C4

hold

head = 1
tail = 0

num = 1
head = 0
tail = 0

num = 0

example 3: circular array - insert

Initial state:

head = 0;  tail = 0;  num = 0;

queue.insert (5) ;

5

head = 1;  tail = 0;  num = 1;

C2: if (0 < num < 10) 
num == (head – tail) % 10

C3: num == NI – NE

C4: (insert x)
pre: if (num < 10) 
post: num == num + 1 &&

array[(head-1)%10] = x;
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tail
head

example 3: circular array – insert (2)

queue. insert (3) ;

5 3 Initial state:

head = 0;  tail = 0;  num = 0;

queue.insert (5) ;

head = 1;  tail = 0;  num = 1;

head = 2;  tail = 0;  num = 2;

C2, C3, C4

hold

C2: if (0 < num < 10) 
num == (head – tail) % 10

C3: num == NI – NE

C4: (insert x)
pre: if (num < 10) 
post: num == num + 1 &&

array[(head-1)%10] = x;
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example 3: circular array – insert (3)

tail
head

1 3 7 4 Initial state:

head = 9;  tail = 5;  num = 4;

queue. insert (6) ;

head = 0; tail = 5; num = 5
head

C2, C3, C4

hold
C2: if (0 < num < 10) 

num == (head – tail) % 10

C3: num == NI – NE

C4: (insert x)
pre: if (num < 10) 
post: num == num + 1 &&

array[(head-1)%10] = x;

6
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example 3: circular array – extract

7 4 6 Initial state:

head = 0;  tail = 5;  num = 0;

tail

head

queue. extract (int &elem) ;

head = 0; tail = 6; num = 4

tail

1 31

C2, C3, C5

hold
C2: if (0 < num < 10) 

num == (head – tail) % 10

C3: num == NI – NE

C5: (extract &x) 
pre: if (num > 0) 
post: num == num –1

x = array[(tail-1)%10];
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example 3: the problem

 if the insert operation is performed by two processes, 
some consistency property may be violated!

void *threadA(void *)
{

...
queue.insert(5);
...

}

void *threadB(void *)
{

...
queue.insert(2);
...

}

CircularArray queue;

7 46 3
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example 3: interference

7 46 3

Initial state:

head = 7;  tail = 3;  num = 4;

queue. insert (5) ; (TA)

if (num == 10) return false;
array[head] = 5;
head = (head + 1) % 10; (**)
num ++;
return true;

queue. insert (2) ; (TB)

if (num == 10) return false;
array[head] = 2;
head = (head + 1) % 10; (*)
num ++;
return true;

if (num == 10) return false; (TA)
array[head] = 5; (TA)
if (num == 10) return false; (TB)
array[head] = 2; (TB)
head = (head + 1) % 10; (TB) (*)
num ++; (TB)
return true; (TB)
head = (head + 1) % 10; (TA) (**)
num ++; (TA)
return true; (TA)

5

Final State:

head = 9; tail = 3; num = 6;

2 head (**)

head (*)

C 4 is violated!

5 != array[head – 1]
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example 3: correctness

 the previous program is not correct
 it exist a possible interleaving of two insert operations that leaves 

the resource in a inconsistent state
 proving the non-correctness is easy

 it suffices to find a counter example
 proving the correctness is not easy

 it is necessary to prove the correctness for every possible 
interleaving of every operation
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example 3: problem

 what if an insert and an extract are interleaved?
 nothing bad can happen!! 
 proof

 if 0<num<10, insert() and extract() are independent
 if num==0

 if extract begins before insert, it immediately returns false, so nothing bad 
can happen

 if insert begins before, extract will still return false, so it cannot interfere 
with insert

 same thing when num==10
 question: what happens if we exchange the sequence of 

instructions in insert or extract?
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example 3: CircularArray properties

 a) if more than one thread executes queue.insert()
 inconsistency!!

 b) if we have only two threads
 one threads calls queue.insert() and the other thread calls 

queue.extract()
 no inconsistency!

 the order of the operations is important! 
 a wrong order can make the object inconsistency even under the 

assumption b)
 the case is when num is incremented but the data has not yet been 

inserted
 in any case, the final result depends on the timings of the different 

requests (e.g, an insertion when the buffer is full)
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example 3: questions

 problem:
 in the previous example, we supposed that num++ and num-- are 

atomic operations
 what happens if they are not atomic?

 question:
 assuming that operation -- and ++ are not atomic, can we make 

the circularArray safe under the assumption b) ?
 hint: try to substitute variable num with two boolean variables, 

bool empty and bool full;
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critical sections

 definitions
 the shared object where the conflict may happen is a “resource”
 the parts of the code where the problem may happen are called 

“critical sections”
 a critical section is a sequence of operations that cannot be 

interleaved with other operations on the same resource
 two critical sections on the same resource must be properly 

sequentialized
 we say that two critical sections on the same resource must 

execute in MUTUAL EXCLUSION
 there are three ways to obtain mutual exclusion

 implementing the critical section as an atomic operation
 disabling the preemption (system-wide)
 selectively disabling the preemption (using semaphores and mutual 

exclusion)
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critical sections: atomic operations

 in single processor systems
 disable interrupts during a critical section

 problems:
 if the critical section is long, no interrupt can arrive during the 

critical section
 consider a timer interrupt that arrives every 1 msec. 
 if a critical section lasts for more than 1 msec, a timer interrupt could 

be lost!
 Non voluntary context switch is disabled during the critical section!

 we must avoid conflicts on the resource, not disabling interrupts!
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critical sections: atomic operations (2)

 multi-processor
 define a flag s for each resource
 use lock(s)/unlock(s) around the critical section

 problems:
 busy waiting: if the critical section is long, we waste a lot of time
 cannot be used in single processors!

int s;
...
lock(s);
<critical section>
unlock(s);
...
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critical sections: disabling preemption

 single processor systems
 in some scheduler, it is possible to disable preemption for a limited 

interval of time
 problems:

 if a high priority critical thread needs to execute, it cannot make 
preemption and it is delayed

 even if the high priority task does not access the resource!

<disable preemption>
<critical section>
<enable preemption>

no context
switch may happen 
during the critical

section but interrupts are
enabled
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critical sections: selectively dis. preemption

 there exist some general mechanisms to implement 
mutual exclusion only between the tasks that uses the 
resource.
 semaphores
 mutexes
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synchronisation

 mutual exclusion is not the only problem
 we need a way of synchronise two or more threads

 example: producer/consumer
 suppose we have two threads, 

 one produces some integers and sends them to another thread 
(PRODUCER)

 another one takes the integer and elaborates it (CONSUMER)

Producer Consumer
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producer/consumer

 the two threads have different speeds
 for example the producer is much faster than the consumer
 we need to store the integers in a queue, so that no data is 

lost
 let’s use the CircularArray class
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producer/consumer (2)

 problems with this approach:
 if the queue is full, the producer actively waits
 if the queue is empty, the consumer actively waits

void *producer(void *)
{

bool res;
int data;
while(1) {

<obtain data>
while (!queue.insert(data));

}
}

void *consumer(void *)
{

bool res;
int data;
while(1) {

while (!queue.extract(&data));
<use data>

}
}

CircularArray queue;
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a more general approach

 we need to provide a general mechanism for 
synchonisation and mutual exclusion

 requirements
 provide mutual exclusion between critical sections

 avoid two interleaved insert operations
 (semaphores, mutexes)

 synchronise two threads on one condition
 for example, block the producer when the queue is full
 (semaphores, condition variables)
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general mechanism: semaphores

 Djikstra proposed the semaphore mechanism
 a semaphore is an abstract entity that consists of

 a counter
 a blocking queue
 operation wait
 operation signal

 the operations on a semaphore must be atomic
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semaphores

 semaphores are a basic mechanisms for providing 
synchronization
 it has been shown that every kind of synchronization and mutual 

exclusion can be implemented by using sempahores
 we will analyze possible implementation of the semaphore 

mechanism later

class Semaphore {
<blocked queue> blocked;
int counter;

public:
Semaphore (int n) : count (n) {...}
void wait();
void signal();

};
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wait and signal

 a wait operation has the following behavior
 if counter == 0, the requiring thread is blocked 

 it is removed from the ready queue
 it is inserted in the blocked queue

 if counter > 0, then counter--;
 a signal operation has the following behavior

 if counter == 0 and there is some blocked thread, unblock it
 the thread is removed from the blocked queue
 it is inserted in the ready queue

 otherwise, increment counter
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semaphores

class Semaphore {
<blocked queue> blocked;
int count;

public:
Semaphore (int n) : count (n) {...}
void wait() {

if (counter == 0) 
<block the thread>

else counter--;
}
void signal() {

if (<some blocked thread>) 
<unblock the thread>

else counter++; 
}

};
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signal semantics

 what happens when a thread blocks on a semaphore?
 in general, it is inserted in a BLOCKED queue

 extraction from the blocking queue can follow different 
semantics:
 strong semaphore

 the threads are removed in well-specified order 
 for example, the FIFO order is the fairest policy, priority based 

ordering, ...
 signal and suspend

 after the new thread has been unblocked, a thread switch happens
 signal and continue

 after the new thread has been unblocked, the thread that executed the 
signal continues to execute

 concurrent programs should not rely too much on the 
semaphore semantic
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mutual exclusion with semaphores

 how to use a semaphore for critical sections
 define a semaphore initialized to 1
 before entering the critical section, perform a wait
 after leaving the critical section, perform a signal

Semaphore s(1);

void *threadA(void *)
{

...
s.wait();
  <critical section>
s.signal();
...

}

void *threadB(void *)
{

...
s.wait();
  <critical section>
s.signal();
...

}
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mutual exclusion with semaphores (2)

semaphore

counter 10

s.wait(); (TA)
<critical section (1)> (TA)
s.wait() (TB)
<critical section (2)> (TA)
s.signal() (TA)
<critical section> (TB)
s.signal() (TB)

1
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synchronization
 how to use a semaphore for synchronization

 define a semaphore initialized to 0
 at the synchronization point, perform a wait
 when the synchronization point is reached, perform a signal
 in the example, threadA blocks until threadB wakes it up

Semaphore s(0);

void *threadA(void *)
{

...
s.wait();
...

}

void *threadB(void *)
{

...
s.signal();
...

}

 how can both A and B synchronize on the same instructions?
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producer/consumer

 consider a producer/consumer system
 one producer executes queue.insert()

 we want the producer to be blocked when the queue is full
 the producer will be unblocked when there is some space again

 one consumer executes queue.extract
 we want the consumer to be blocked when the queue is empty
 the consumer will be unblocked when there is some space again

 first attempt: one producer and one consumer only
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producer/consumer (2)

class CircularArray {
int array[10];
int head, tail;
Semaphore empty, full;

public:
CircularArray() : head(0), tail(0),

empty(0), full(10) {}
void insert(int elem) {

wait(full);
  array[head] = elem;
  head = (head + 1) % 10;
signal(empty);

}
void extract(int &elem) {

wait(empty);
  elem = array[tail];
  tail = (tail + 1) % 10;
signal(full);

}
} queue;

Note: there is no member 
called num as in the example 
3 (slide 22)!!!
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producer/consumer: properties

 notice that
 the value of the counter of empty is the number of elements in the 

queue
 it is the number of times we can call extract without blocking

 the value of the counter of full is the complement of the elements 
in the queue

 it is the number of times we can call insert without blocking

 exercise
 prove that the implementation is correct

 insert() never overwrites elements
 extract() always gets an element of the queue 
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producers/consumers

 now let’s combine mutual exclusion and synchronization
 consider a system in which there are 

 many producers 
 many consumers

 we want to implement synchronization
 we want to protect the data structure
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producers/consumers: does it work?

class CircularArray {
int array[10];
int head, tail;
Semaphore full, empty;
Semaphore mutex;

public:
CircularArray() : head(0), tail(0),

empty(0), full(10), mutex(1) {}
void insert(int elem); 
void extract(int &elem);

} queue;

void CircularArray::insert(int elem)
{

mutex.wait();
  full.wait();
    array[head]=elem;
    head = (head+1)%10;
  empty.signal();
mutex.signal();

}

void CircularArray::extract(int &elem)
{

mutex.wait();
  empty.wait();
    elem = array[tail];
    tail = (tail+1)%10;
  full.signal();
mutex.signal();

}
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producers/consumers: correct solution

class CircularArray {
int array[10];
int head, tail;
Semaphore full, empty;
Semaphore mutex;

public:
CircularArray() : head(0), tail(0),

empty(0), full(10), mutex(1) {}
void insert(int elem); 
void extract(int &elem);

} queue;

void CircularArray::insert(int elem)
{

full.wait();
  mutex.wait();
    array[head]=elem;
    head = (head+1)%10;
  mutex.signal();
empty.signal();

}

void CircularArray::extract(int &elem)
{

empty.wait();
  mutex.wait();
    elem = array[tail];
    tail = (tail+1)%10;
  mutex.signal();
full.signal();

}
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producers/consumers: deadlock situation

 deadlock situation
 a thread executes mutex.wait() and then blocks on a 

synchronisation semaphore
 to be unblocked another thread must enter a critical section 

guarded by the same mutex semaphore!
 so, the first thread cannot be unblocked and free the mutex!
 the situation cannot be solved, and the two threads will never 

proceeds
 as a rule, never insert a blocking synchronization inside a 

critical section!!!
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semaphore implementation

 system calls
 wait() and signal() involve a possible thread-switch
 therefore they must be implemented as system calls!

 one blocked thread must be removed from state RUNNING and be 
moved in the semaphore blocking queue

 protection:
 a semaphore is itself a shared resource
 wait() and signal() are critical sections!
 they must run with interrupt disabled and 

by using lock() and unlock() primitives 
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semaphore implementation (2)

void Semaphore::wait()
{

spin_lock_irqsave();
if (counter==0) { 

<block the thread>
schedule();

} else counter--;
spin_lock_irqrestore();

}

void Semaphore::signal()
{

spin_lock_irqsave();
if (counter== 0) { 

<unblock a thread>
schedule();

} else counter++;
spin_lock_irqrestore();

}


