Laurea Specialistica in Ingegneria
delllAutomazione

Sistemi in Tempo Reale

Giuseppe Lipari

Introduzione alla concorrenza - |l

the need for concurrency

= there are many reason for concurrency
= functional
= performance
= expressive power

= functional
= many users may be connected to the same system at the same
time
= each user can have its own processes that execute concurrently with
the processes of the other users

= perform many operations concurrently

= for example, listen to music, write with a word processor, burn a CD,
etc...

= they are all different and independent activities
= they can be done “at the same time”

the need for concurrency (2)

= performance

= take advantage of blocking time

= while some thread waits for a blocking condition, another thread
performs another operation

= parallelism in multi-processor machines

= if we have a multi-processor machine, independent activities can be
carried out on different processors are the same time

m expressive power
= many control application are inherently concurrent

= concurrency support helps in expressing concurrency, making
application development simpler

theoretical model

= g system is a set of concurrent activities
= they can be processes or threads

= they interact in two ways

= they access the hardware resources
= processor
= disk
= memory, etc.

= they exchange data

= these activities compete for the resources and/or
cooperate for some common objective

resource

= g resource can be
= a HW resource like a I/0 device
= a SWresource, i.e. a data structure
= in both cases, access to a resource must be regulated to avoid
interference
= example 1

= if two processes want to print on the same printer, their access
must be sequentialised, otherwise the two printing could be
intermangled!

= example 2

= if two threads access the same data structure, the operation on the
data must be sequentialized otherwise the data could be
inconsistent!

Interaction model

= gctivities can interact according to two fundamental
models
= shared memory
= All activities access the same memory space
= message passing

= All activities communicate each other by sending messages through
OS primitives

= we will analize both models in the following slides

cooperative vs competitive

the interaction between concurrent activities (threads
or processes) can be classified into:

= competitive concurrency
= different activities compete for the resources
= one activity does not know anything about the other
= the OS must manage the resources so to
= avoid conflicts
= be fair
= cooperative concurrency
= many activities cooperate to perform an operation
= every activity knows about the others
= they must synchronize on particular events

= nterference

competition

= cooperative and competitive activities need different
models of execution and synchronization
= competing activities need to be “protected” from each other
= separate memory spaces
= the process model is the best

= the allocation of the resource and the synchronization must
be centralized

= competitive activities requests for services to a central
manager (the OS or some dedicated process) which allocates
the resources in a fair way

= Client/Server model
= communication is usually done through messages
= the process model of execution is the best one

competition (2)

= |n a client/server system
= a server manages the resource exclusively
= for example, the printer

= if a process needs to access the resource, it sends a request to
the server
= for example, printing a file, or asking for the status

= the server can send back the responses

= the server can also be on a remote system
= two basic primitives

= send and receive

cooperation

= cooperative activities know about each other

they do not need memory protection
= not using memory protection, we have less overhead

they need to access the same data structures
allocation of the resource is de-centralized
shared memory is the best model

the thread model of execution is the best one

10

cooperation and competion

= competion is best resolved by using
the message passing model

= however it can be implemented using a shared memory paradigm
too

= cooperation is best implemented by using
the shared memory paradigm

= however, it can be realized by using pure message passing
mechanisms

= shared memory or message passing?

= in the past, there were OS that supported only shared memory or
only message passing

11

cooperation and competion (2)

= a general purpouse OS needs to support both models
= we need at least protection for competing activities

= we need to support client/server models. So we need message
passing primitives

= we need to support shared memory for reducing the overhead

= some special OS supports only one of the two
= for example, many RTOS support only shared memory

12

Interference

= there is a third kind of interaction, that is interference,
due to one of the following programming errors:

= |nteractions between processes that are not required by the
semantic of the problem

= erroneous solution to the problems of interaction

= interference problems are usually time-dependent
problems

13

models of concurrency: shared memory

shared memory

= shared memory communication
= jt was the first one to be supported in old OS
= jtis the simplest one and the closest to the machine
= all threads can access the same memory locations

Shared memory

15

resource allocation

= allocation of resource can be

= static: once the resource is granted, it is never revoked
= dynamic: resource can be granted and revoked dynamically

= manager

= access to a resource can be

= dedicated: one activity at time only is granted access to the

resource

= shared: many activity can access the resource at the same time

= mutual exclusion

Dedicated Shared

Static | Compile Manager
Time

Dynamig¢ Manager Manager

16

mutual exclusion problem

= we do not know in advance the relative speed of the
processes

= hence, we do not know the order of execution of the hardware
instructions

= recall the example of incrementing variable x
= incrementing x is not an atomic operation

= atomic behavior can be obtained using interrupt disabling or
special atomic instructions

17

example 1

shared memory

void *threadA(void *)
{

ey

void *threadB(void *)
{

nany

int X ; X=X+ 1; X=X+ 1
})
= bad interleaving:
LD RO, x TA x=0
LD RO, x TB Xx=0
INCRO TB Xx=0
ST x, RO TB Xx=1
INCRO TA Xx=1
ST x, RO TA Xx=1

18

example 2

Shared object (sw resource)

class A {
int a;
int b;
public:
AQ) :a(1), b(1) {};

} obj;

voidinc){a=a+1;b=b+1;}
void double) { b=b *2; a=a *2;}

bad interleaving

\

1, TA
2; TB
1, TA
2; TB

0O T T W
0O OO W
A WNDN

consistency:
after each
operation,

ad ==

void * threadA(void *)
{

obj.inc();
-

void * threadB(void *)
{

obj.double();

resource in a

— non-consistent

state!

19

consistency

= for each resource, we can state some consistency
property

= a consistency property C, is a boolean expression on the values of
the internal variables

= a consistency property must hold before and after each operation

= it does not hold during an operation

= if the operations are properly sequentialized, the consistency
properties must hold

= formal verification

= |et R be aresource, and let C(R) be a set of consistency properties
on the resource

e C(R)=/C.1}
ol LAY/ 1 YiJ

Definition: a concurrent program is correct if, for every possible

interleaving of the operations on the resource, the consistency
properties hold after each operation

20

example 3: circular array

class CircularArray {
int array[10];
int head, tail, num;
public:
CircularArray() : head(0),
tail(0), num(0) {}

bool insert(int elem) {
if (num == 10) return false;
array[head] = elem;
head = (head + 1) % 10;
num ++;
return true;

}

bool extract(int &elem) {
if (num == 0) return false;
elem = array[tail];
tail = (tail + 1) % 10;
num - -;
return true;

} queue;

consistency properties
(suppose num++ and num-- atomic)

C,: if (num == 0 || num == 10)
head == tail;

C,: if (0 < num < 10)
num == (head — tail) % 10

C;: num == NI-NE

C,: (insert x)
pre: if (num < 10)
post: num == num + 1 &&
array[(head-1)%10] = x;

C,: (extract &x)
pre: if (num > 0)
post: num == num -1 &&
X = array[(tail-1)%10];

21

example 3: circular array - insert

Initial state:

head = 0; tail = 0; num = 0;

queue.insert (5) ;

head = 1; tail =0; num=1;

if (0 < num < 10)
num == (head — tail) % 10

num == NI — NE

(insert x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

22

example 3: circular array — insert (2)

Initial state:

head = 0; tail = 0; num = 0;

queue.insert (5) ;

head = 1; tail =0; num=1;

queue. insert (3) ;

if (0 < num < 10)
num == (head — tail) % 10

num == NI — NE

(insert x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

head = 2; tail = 0; num = 2;

23

example 3: circular array — insert (3)

Initial state:

head = 9; tail =5; num = 4;

queue. insert (6) ;

head = 0; tail = 5, num =5

if (0 < num < 10)
num == (head - tail) % 10

num == NI — NE

(insert x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

24

example 3: circular array — extract

Initial state:

head = 0; tail =5; num = 0;

queue. extract (int &elem) ;

head = 0; tail = 6; num =4

if (0 < num < 10)
num == (head — tail) % 10

num == NI — NE

(extract &x)
pre: if (num > 0)
post: num == num -1

X = array[(tail-1)%10];

25

example 3: the problem

= if the insert operation is performed by two processes,

some consistency property may be violated!

CircularArray queue;

JEEN

void *threadA(void *)
{

queue.insert(5);

void *threadB(void *)
{

queue.insert(2);

26

example 3: interference

2 IS

Initial state:

C, iis violated!

5 I=array[head — 1]

if (num == 10) return false;
array[head] = 5;

num ++;
return true;

=

head = (head + 1) % 10; (**)

head = 7; tail = 3; num = 4;

(TA)

7 queue. insert (5) ;

queue. insert (2) ; (TB)

if (num == 10) return false; (TA)
array[head] = 5; (TA)
if (num == 10) return false; (TB)

array[head] = 2; (TB)
head = (head + 1) % 10; (TB) (*)
num ++; (TB)
return true; (TB)
head = (head + 1) % 10; (TA) (**)
num ++; (TA)
return true; (TA)

I R

if (num == 10) return false;
array[head] = 2;

head = (head + 1) % 10; (*)
num ++;

return true;

Final State:

head = 9; tail = 3; num = 6;

27

example 3: correctness

= the previous program is not correct

= it exist a possible interleaving of two insert operations that leaves
the resource in a inconsistent state

= proving the non-correctness is easy
= it suffices to find a counter example

= proving the correctness is not easy

= jtis necessary to prove the correctness for every possible
interleaving of every operation

28

example 3: problem

= what if an insert and an extract are interleaved?
= nothing bad can happen!!

= proof
= if 0<num<10, insert() and extract() are independent
= if num==
if extract begins before insert, it immediately returns false, so nothing bad
can happen
if insert begins before, extract will still return false, so it cannot interfere
with insert

= same thing when num==10

= question: what happens if we exchange the sequence of
instructions in insert or extract?

29

example 3: CircularArray properties

= 3) if more than one thread executes queue.insert()
= inconsistency!!

= b)if we have only two threads

= one threads calls queue.insert() and the other thread calls
queue.extract()

= no inconsistency!

= the order of the operations is important!

= a wrong order can make the object inconsistency even under the
assumption b)

= the case is when num is incremented but the data has not yet been
inserted

= in any case, the final result depends on the timings of the different
requests (e.g, an insertion when the buffer is full)

30

example 3. questions

= problem:

= in the previous example, we supposed that num++ and num-- are
atomic operations

= what happens if they are not atomic?

= question:
= assuming that operation -- and ++ are not atomic, can we make
the circularArray safe under the assumption b) ?

= hint: try to substitute variable num with two boolean variables,
bool empty and bool full;

31

critical sections

= definitions
= the shared object where the conflict may happen is a “resource”

the parts of the code where the problem may happen are called
“critical sections”

= a critical section is a sequence of operations that cannot be
interleaved with other operations on the same resource

= two critical sections on the same resource must be properly
sequentialized

= we say that two critical sections on the same resource must
execute in MUTUAL EXCLUSION

= there are three ways to obtain mutual exclusion
= implementing the critical section as an atomic operation
= disabling the preemption (system-wide)

= selectively disabling the preemption (using semaphores and mutual
exclusion)

32

critical sections: atomic operations

= |n single processor systems
= disable interrupts during a critical section

= problems:
= if the critical section is long, no interrupt can arrive during the
critical section
= consider a timer interrupt that arrives every 1 msec.

= if a critical section lasts for more than 1 msec, a timer interrupt could
be lost!

= Non voluntary context switch is disabled during the critical section!
= we must avoid conflicts on the resource, not disabling interrupts!

33

critical sections: atomic operations (2)

= multi-processor
= define a flag s for each resource
= use lock(s)/unlock(s) around the critical section

= problems:
= busy waiting: if the critical section is long, we waste a lot of time
= cannot be used in single processors!

int s;

lock(s);
<critical section>
unlock(s);

34

critical sections: disabling preemption

= single processor systems

= jn some scheduler, it is possible to disable preemption for a limited
interval of time
= problems:

= if a high priority critical thread needs to execute, it cannot make
preemption and it is delayed

= even if the high priority task does not access the resource!

<disable preemption>
<critical section>
<enable preemption>

35

critical sections: selectively dis. preemption

= there exist some general mechanisms to implement
mutual exclusion only between the tasks that uses the
resource.
= semaphores
= mutexes

36

synchronisation

= mutual exclusion is not the only problem
= we need a way of synchronise two or more threads

= example: producer/consumer

= suppose we have two threads,

= one produces some integers and sends them to another thread
(PRODUCER)

= another one takes the integer and elaborates it (CONSUMER)

37

producer/consumer

= the two threads have different speeds
= for example the producer is much faster than the consumer

= we need to store the integers in a queue, so that no data is
lost

= |et’s use the CircularArray class

38

producer/consumer (2)

CircularArray queue;

void *producer(void *) void *consumer(void *)
{ {
bool res; bool res;
int data; int data;
while(1) { while(1) {
<obtain data> while ('queue.extract(&data));
while (lqueue.insert(data)); <use data>
} }
} }

problems with this approach:
= if the queue is full, the producer actively waits
= if the queue is empty, the consumer actively waits

39

a more general approach

= we need to provide a general mechanism for
synchonisation and mutual exclusion

= requirements
= provide mutual exclusion between critical sections
= avoid two interleaved insert operations
= (semaphores, mutexes)
= synchronise two threads on one condition
= for example, block the producer when the queue is full
= (semaphores, condition variables)

40

general mechanism: semaphores

= Dijikstra proposed the semaphore mechanism

= a semaphore is an abstract entity that consists of
= a counter
= a blocking queue
= operation wait
= operation signal

= the operations on a semaphore must be atomic

41

semaphores

= semaphores are a basic mechanisms for providing
synchronization

it has been shown that every kind of synchronization and mutual
exclusion can be implemented by using sempahores

we will analyze possible implementation of the semaphore
mechanism later

class Semaphore {
<blocked queue> blocked;

int counter;
public:
Semaphore (int n) : count (n) {...}
void wait();
void signal();

o

42

wait and signal

= a wait operation has the following behavior

= if counter == 0, the requiring thread is blocked
= it is removed from the ready queue
= it is inserted in the blocked queue

= if counter > 0, then counter--;

= a signal operation has the following behavior

= if counter == 0 and there is some blocked thread, unblock it
= the thread is removed from the blocked queue
= it is inserted in the ready queue

= otherwise, increment counter

43

semaphores

class Semaphore {
<blocked queue> blocked;
int count;
public:
Semaphore (int n) : count (n) {...}
void wait() {
if (counter == 0)
<block the thread>
else counter--;
by
void signal() {
if (<some blocked thread>)
<unblock the thread>
else counter++;

¥
¥

44

signal semantics

= what happens when a thread blocks on a semaphore?
= in general, itis inserted in a BLOCKED queue

= extraction from the blocking queue can follow different
semantics:

= strong semaphore

= the threads are removed in well-specified order

= for example, the FIFO order is the fairest policy, priority based
ordering, ...

= signal and suspend
= after the new thread has been unblocked, a thread switch happens

= signal and continue

= after the new thread has been unblocked, the thread that executed the
signal continues to execute

= concurrent programs should not rely too much on the
semaphore semantic

45

mutual exclusion with semaphores

= how to use a semaphore for critical sections
= define a semaphore initialized to 1
= before entering the critical section, perform a wait
= after leaving the critical section, perform a signal

Semaphore s(1);

{

void *threadA(void *)

.s..lwa it();

<critical section>

s.signal();

void *threadB(void *)
{

s.wait();
<critical section>
s.signal();

46

mutual exclusion with semaphores (2)

semaphore

s.wait(); (TA)
<critical section (1)> (TA)
s.wait() (TB)
<critical section (2)> (TA)
s.signal() (TA)
<critical section> (TB)

s.signal() (TB)

47

synchronization

= how to use a semaphore for synchronization
= define a semaphore initialized to O
= at the synchronization point, perform a wait
= when the synchronization point is reached, perform a signal
= |n the example, threadA blocks until threadB wakes it up

Semaphore s(0);
void *threadA(void *) void *threadB(void *)
{ {
swait(); «— — + — — — 4 - —s.signal();
})

= how can both A and B synchronize on the same instructions?
48

producer/consumer

= consider a producer/consumer system

= one producer executes queue.insert()

= we want the producer to be blocked when the queue is full

= the producer will be unblocked when there is some space again
= one consumer executes queue.extract

= we want the consumer to be blocked when the queue is empty

= the consumer will be unblocked when there is some space again
= first attempt: one producer and one consumer only

49

producer/consumer (2)

class CircularArray {
int array[10];
int head, tail;
Semaphore empty, full;
public:
CircularArray() : head(0), tail(0),
empty(0), full(10) {}
void insert(int elem) {
wait(full);
array[head] = elem;
head = (head + 1) % 10;

signal(empty);
}
void extract(int &elem) {
wait(empty);
elem = array[tail];
tail = (tail + 1) % 10;
signal(full);
¥ Note: there is no member
} queue; called num as in the example

3 (slide 22)!!
50

producer/consumer: properties

= notice that

= the value of the counter of empty is the number of elements in the
queue

= it is the number of times we can call extract without blocking

= the value of the counter of full is the complement of the elements
in the queue

= it is the number of times we can call insert without blocking

exercise

= prove that the implementation is correct
= insert() never overwrites elements
= extract() always gets an element of the queue

51

producers/consumers

= now let's combine mutual exclusion and synchronization

= consider a system in which there are
= many producers
" many consumers

= we want to implement synchronization
= we want to protect the data structure

52

producers/consumers: does it work?

class CircularArray {
int array[10];
int head, tail;
Semaphore full, empty;
Semaphore mutex;
public:
CircularArray() : head(0), tail(0),
empty(0), full(10), mutex(1) {}
void insert(int elem);
void extract(int &elem);

} queue;

void CircularArray::insert(int elem)
{
mutex.wait();
full.wait();
array[head]=elem;
head = (head+1)%10;

empty.signal();
mutex.signal();

}

void CircularArray::extract(int &elem)

{

mutex.wait();
empty.wait();
elem = array[tail];
tail = (tail+1)%10;
full.signal();
mutex.signal();

}

53

producers/consumers: correct solution

class CircularArray {
int array[10];
int head, tail;
Semaphore full, empty;
Semaphore mutex;
public:
CircularArray() : head(0), tail(0),
empty(0), full(10), mutex(1) {}
void insert(int elem);
void extract(int &elem);

} queue;
void CircularArray::insert(int elem) void CircularArray::extract(int &elem)
{ {
full.wait(); empty.wait();
mutex.wait(); mutex.wait();
array[head]=elem; elem = array[tail];
head = (head+1)%10; tail = (tail+1)%10;
mutex.signal(); mutex.signal();
empty.signal(); full.signal();
} }

54

producers/consumers: deadlock situation

= deadlock situation

= a thread executes mutex.wait() and then blocks on a
synchronisation semaphore

= to be unblocked another thread must enter a critical section
guarded by the same mutex semaphore!

= 30, the first thread cannot be unblocked and free the mutex!
= the situation cannot be solved, and the two threads will never
proceeds
= as arule, never insert a blocking synchronization inside a
critical section!!!

55

semaphore implementation

= gsystem calls
= walit() and signal() involve a possible thread-switch

= therefore they must be implemented as system calls!

= one blocked thread must be removed from state RUNNING and be
moved in the semaphore blocking queue

= protection:
= a semaphore is itself a shared resource
= wait() and signal() are critical sections!

= they must run with interrupt disabled and
by using lock() and unlock() primitives

56

semaphore implementation (2)

void Semaphore::wait()
{
spin_lock_irgsave();
if (counter==0) {
<block the thread>
schedule();
} else counter--;
spin_lock_irgrestore();

void Semaphore::signal()
{
spin_lock_irgsave();
if (counter==0) {
<unblock a thread>
schedule();
} else counter++;
spin_lock_irgrestore();

57

