
Laurea Specialistica in Ingegneria
dell'Automazione

Sistemi in Tempo Reale
Giuseppe Lipari

Introduzione alla concorrenza - IV

2

monitors

 monitors are a language structure equivalent to
semaphores, but cleaner
 a monitor is similar to an object in a OO language
 it contains variables and provides procedures to other software

modules
 only one thread can execute a procedure at a certain time

 any other thread that has invoked the procedure is blocked and waits
for the first threads to exit

 therefore, a monitor implicitely provides mutual exclusion
 the source code that is used to implement the mutual exclusion is

automatically inserted by the compiler
 Example: Java language

 It provides a way to implement monitors through the keyword
Synchronized

3

condition variables

 monitors support synchronization with Condition Variables
 a condition variable is a blocking queue
 two operations are defined on a condition variable

 wait() -> suspends the calling thread on the queue
 signal() -> resume execution of one thread blocked on the queue

 important note:
 wait() and signal() operation on a condition variable are different

from wait and signal on a semaphore!
 there is not any counter in a condition variable!
 if we do a signal on a condition variable with an empty queue, the

signal is lost
 there are 6 ways to implement a monitor construct

 we will only look at the POSIX approach
(that is the same used by the MESA language)

4

CircularArray with monitors

class CircularArray {
int array[10];
int head, tail, num;
Condition empty, full;

public:
CircularArray() : head(0), tail(0), num

(0) {}
void insert(int elem) synchronized;
void extract(int &elem) synchronized;

} queue;

void CircularArray::insert(int elem) synchronized
{

while (num==10) full.wait();
array[head]=elem;
head = (head+1)%10;
num++;
if (num==1) empty.signal();

}

void CircularArray::extract(int &elem) synchronized
{

while (num== 0) empty.wait();
elem = array[tail];
tail = (tail+1)%10;
num--;
if (num == 9) full.signal();

}

models of concurrency: message passing

6

message passing

 message passing systems are based on the basic concept
of message

 two basic operations
 send(destination, message);
 receive(source, &message);

 two variants
 both operations can be synchronous or asynchronous
 receive can be symmetric or asymmetric

7

Producer/Consumer with MP

 the producer executes send(consumer, data)
 the consumer executes receive(producer, data);
 no need for a special communication structure (already

contained in the send/receive semantic)

Producer Consumer

8

resources and message passing
 there are no shared resources in the message passing

model
 all the resources are allocated statically, accessed in a dedicated

way
 each resource is handled by a manager process that is the

only one that have right to access to a resource
 the consistency of a data structure is guaranteed by the

manager process
 there is no more competition, only cooperation!!!

9

synchronous communication

 synchronous send/receive
 no buffers!

producer:
 s_send(consumer, d);

consumer:
 s_receive(producer, &d);

producer consumer

send

receive

blocked

producer consumer

send

receive

blocked

10

async send/ sync receive

 asynchronous send / synchronous receive
 there is probably a send buffer somewhere

producer:
 a_send(consumer, d);

consumer:
 s_receive(producer, &d);

producer consumer

send

receiveproducer consumer

send

receive

blocked

11

asymmetric receive

 symmetric receive
 receive(source, &data);
 the programmer wants a message from a given producer

 asymmetric receive
 source = receive(&data);
 often, we do not know who is the sender

 imagine a web server;
 the programmer cannot know in advance the address of the browser

that will request the service
 many browser can ask for the same service

12

remote procedure call
 in a client server system, a client wants to request an action

to a server
 that is typically done using a remote procedure call (RPC)

client server

RPC

blocked

13

message passing systems

 in message passing
 each resource needs one threads manager
 the threads manager is responsible for giving access to the

resource
 example: let’s try to implement mutual exclusion with

message passing primitives
 one thread will ensure mutual exclusion
 every thread that wants to access the resourec must

 send a message to the manager thread
 access the critical section
 send a message to signal the leaving of the critical section

14

sync send / sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
s_receive_from(source, &d);

}
}

void * thread(void *)
{

int d;
while (true) {

s_send(manager, d);
<critical section>
s_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec

send send

send send

15

with async send and sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
a_send(source,d);
s_receive_from(source,&d);

}
}

void * thread(void *)
{

int d;
while (true) {

a_send(manager, d);
s_receive_from(manager, &d);
<critical section>
a_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec send send

deadlock

17

deadlock and livelock

 deadlock is the situation in which a group of threads are
permanently blocked waiting for some resource

 deadlock can happen in many subtle cases
 example: dining philosophers

 here we will study ways of avoiding deadlock situations

 livelock is the situation where a group of threads tries to
get some resource, but they never succeed
 the idea is that they have a non-blocking wait
 example: dining philosophers with non-blocking wait



 deadlocks and livelocks can be total or partial

18

DEADLOCK!!

example of deadlock

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

Semaphore s1(1);
Semaphore s2(1);

TA

TB

s1.wait()

s2.wait()

s2.wait()

s1.wait()

19

graphical situation

TA

TB

get s1

get s2

get s2

get s1
Deadlock
inevitable

release s2

release s1

release s1

release s2

TA and TB
want s1

TA and TB
want s2

impossible

20

Deadlock
inevitable

graphical situation

TA

TB

get s1

get s2

get s2

get s1

release s2

release s1

release s1

release s2

21

example with no deadlock

TA

TB

get s1

get s2
get s2

get s1

release s2

release s1

release s1

release s2

22

other examples of deadlock

 bad situations can happen even when the resource is not
“on-off”

 consider a memory allocator
 suppose that the maximum memory allocable is 200 Kb

void * threadA(void *)
{

request(80kb);
...
request(60kb);
...
release(140kb);

}

void * threadB(void *)
{

request(70kb);
...
request(80kb);
...
release(150kb);

}

23

consumable and reusable resources

 reusable resources
 it can be safely used by only one thread at time and is not depleted

by the use
 threads must request the resource and later release it, so it can be

reused by other threads
 examples are processor, memory, semaphores, etc.

 consumable resources
 it is created and destroyed dynamically
 once the resource is acquired by a thread, it is immediately

“destroyed” and cannot be reused
 examples are messages in a FIFO queue, interrupts, I/O data, etc.

24

deadlock with consumable resources

void *threadA(void *)
{

s_receive_from(threadB, msg1);
...
s_send(threadB, msg2);
...

}

void *threadB(void *)
{

s_receive_from(threadA, msg1);
...
s_send(threadA, msg2);
...

}

TA

TB

s_receive_from(threadB,msg1)

s_receive_from(threadA,msg1)

25

conditions for deadlock

 three conditions
 dynamic allocation of dedicated resources (in mutual exclusion)

 only one process may use the resource at the same time
 hold and wait

 a process may hold allocated resources when it blocks
 no preemption

 the resource cannot be revoked
(note: the CPU is a revokable resource)

 if the three above conditions hold and
 circular wait

 a closed chain of threads exists such that each thread holds at least
one resources needed by the next thread in the chain

 then a deadlock can occur!
 these are necessary and sufficient conditions for a

deadlock

26

how to solve the problem of deadlock

 the basic idea is to avoid that one of the previous
conditions hold

 to prevent deadlock from happening we can distinguish
two class of techniques
 static: we impose strict rules in the way resources may be

requested so that a deadlock cannot occur
 dynamic: dynamically, we avoid the system to enter in dangerous

situations
 three strategies

 deadlock prevention (static)
 deadlock avoidance (dynamic)
 deadlock detection (dynamic)

27

deadlock: something that cannot be changed
 there is something that cannot be disallowed, because

some behavior is forced by the interaction between the
different concurrent activities
 mutual exclusion
 communication

 there is nothing we can do!

28

deadlock prevention: three methods
 take all the resources at the same time
 preempt a thread and give the resource to someone else
 resource allocation in a given order

29

deadlock prevention: conditions

 hold and wait
 we can impose the tasks to take all resources at the same time

with a single operation
 this is very restrictive! even if we use the resource for a small

interval of time, we must take it at the beginning!
 reduces concurrency

30

deadlock prevention: conditions

 no preemption
 this technique can be done only if we can actually suspend what

we are doing on a resource and give it to another thread
 for the “processor” resource, this is what we do with a thread

switch!
 for other kinds of resources, we should “undo” what we were doing

on the resource
 this may not be possible in many cases!

31

deadlock prevention: conditions

 circular wait
 This condition can be prevented by defining a linear ordering of the

resources
 for example: we impose that each thread must access resources

in a certain well-defined order

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

32

deadlock prevention: why this strategy works?

 let us define a oriented graph
 a vertex can be

 a thread (round vertex)
 a resource (square vertex)

 an arrow from a thread to a resource denotes that the thread
requires the resource

 an arrow from a resource to a thread denotes that the resource is
granted to the thread

 deadlock definition
 a deadlock happens if at some point in time there is a cycle in the

graph

33

deadlock prevention: graph

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

TA

TB

S1

S2

34

deadlock prevention: theorem

 if all threads access resources in a given order, a deadlock
cannot occur

 proof:
 by contradiction.
 suppose that a deadlock occurs. then, there is a cycle.
 by hypothesis all threads access resources by order
 therefore, each thread is blocked on a resource that has an order

number grater than the resources it holds.
 starting from a thread and following the cycle, the order number of

the resource should always increase. however, since there is a
cycle, we go back to the first thread. then there must be a thread T
that holds a resource Ra and requests a Resource Rb with Ra <
Rb

 this is a contradiction!

35

deadlock avoidance

 this technique consists in monitoring the system to avoid
deadlock
 we check the behaviour of the system
 if we see that we are going into a dangerous situation, we block

the thread that is doing the request, even if the resource is free
 that algorithm is called the Banker's algorithm

 we skip it :-)

36

deadlock detection

 in this strategy, we monitor the system to check for
deadlocks after they happen
 we look for cycles between threads and resources
 how often should we look?

 it is a complex thing to do, so it takes precious processing time
 it can be done not so often
 a good point to do that is when we lock (but it is computationally

expensive)
 once we discover deadlock, we must recover

 the idea is to
 kill some blocked thread
 return an error in the wait statement if there is a cycle

 that is the POSIX approach

37

recovery strategies

1. abort all threads
 used in almost all OS. the simplest thing to do.

2. check point
 all threads define safe check points. when the OS discover a

deadlock, all involved threads are restarted to a previous check
point
 problem. they can go in the same deadlock again!

3. abort one thread at time
 threads are aborted one after the other until deadlock disappears

4. successively preempt resources
 preempt resources one at time until the deadlock disappears

