Laurea Specialistica in Ingegneria
delllAutomazione

Sistemi in Tempo Reale

Giuseppe Lipari

Introduzione alla concorrenza - |V

monitors

= monitors are a language structure equivalent to
semaphores, but cleaner

a monitor is similar to an object in a OO language

it contains variables and provides procedures to other software
modules

only one thread can execute a procedure at a certain time

= any other thread that has invoked the procedure is blocked and waits
for the first threads to exit

= therefore, a monitor implicitely provides mutual exclusion

the source code that is used to implement the mutual exclusion is
automatically inserted by the compiler
Example: Java language

= |t provides a way to implement monitors through the keyword
Synchronized

condition variables

= monitors support synchronization with Condition Variables
= a condition variable is a blocking queue

= two operations are defined on a condition variable
= wait() -> suspends the calling thread on the queue
= signal() -> resume execution of one thread blocked on the queue

= jmportant note:

= wait() and signal() operation on a condition variable are different
from wait and signal on a semaphore!

= there is not any counter in a condition variable!

= if we do a signal on a condition variable with an empty queue, the
signal is lost
= there are 6 ways to implement a monitor construct

= we will only look at the POSIX approach
(that is the same used by the MESA language)

CircularArray with monitors

class CircularArray {
int array[10];

public:
(0) {}

} queue;

int head, tail, num;
Condition empty, full;

CircularArray() : head(0), tail(0), num

void insert(int elem) synchronized;
void extract(int &elem) synchronized;

void CircularArray::insert(int elem) synchropiz

{

while (num==10) full.wait();
array[head]=elem;

head = (head+1)%10;
num++;

if (num==1) empty.signal();

{

edoid CircularArray::extract(int &elem) synchror

while (num== 0) empty.wait();
elem = array[tail];

tail = (tail+1)%10;

num--;

if (num == 9) full.signal();

lizec

models of concurrency: message passing

message passing

= message passing systems are based on the basic concept
of message

= two basic operations
= send(destination, message);
= receive(source, &message);

= two variants
= both operations can be synchronous or asynchronous
= receive can be symmetric or asymmetric

Producer/Consumer with MP

= the producer executes send(consumer, data)
= the consumer executes receive(producer, data);

= no need for a special communication structure (already
contained in the send/receive semantic)

[
»

resources and message passing

= there are no shared resources in the message passing

model

= all the resources are allocated statically, accessed in a dedicated
way

= each resource is handled by a manager process that is the
only one that have right to access to a resource
= the consistency of a data structure is guaranteed by the

Manager process
= there is no more competition, only cooperation!!!

synchronous communication

= synchronous send/receive

= no buffers!

producer:
s_send(consumer, d);

consumer:
s_receive(producer, &d);

producer

producer

sendi

consumer

L receive

A

send @

blocked

) 4

consumer

\4

' blocked

O

T

)

receive

async send/ sync receive

= asynchronous send / synchronous receive

= there is probably a send buffer somewhere
producer:

consumer

a_send(consumer, d); producer
consumer: send .
s_receive(producer, &d); @
producer consumer
L receive

A

blocked

send @

\4

3 receive

O

10

asymmetric receive

= symmetric receive
= receive(source, &data);
= the programmer wants a message from a given producer

= asymmetric receive
= source = receive(&data);
= often, we do not know who is the sender

= imagine a web server;

= the programmer cannot know in advance the address of the browser
that will request the service

= many browser can ask for the same service

11

remote procedure call

= |n a client server system, a client wants to request an action
to a server
= that is typically done using a remote procedure call (RPC)

client server

l > RPC

. blocked

T

12

message passing systems

" |n message passing
= each resource needs one threads manager
= the threads manager is responsible for giving access to the
resource
= example: let’s try to implement mutual exclusion with
message passing primitives
= one thread will ensure mutual exclusion

= every thread that wants to access the resourec must
= send a message to the manager thread
= access the critical section
= send a message to signal the leaving of the critical section

13

sync send / sync receive

TA

B

void * manager(void *)
{
thread_t source;
intd;
while (true) {

source = s_receive(&d);
s_receive_from(source, &d);

¥
¥

void * thread(void *)
{
int d;
while (true) {
s_send(manager, d);
<critical section>
s_send(manager, d);

rec_from

rec rec_from

14

with async send and sync receive

TA

void * manager(void *) void * thread(void *)
{ {
thread_t source; int d;
int d; while (true) {
while (true) { a_send(manager, d);
source = s_receive(&d); s_receive_from(manager, &d);
a_send(source,d); <critical section>
s_receive_from(source,&d); a_send(manager, d);
} }
} }
rec send rec_from rec send rec_from
. V £ N/

B

+ <critical section>

-------- e O

15

deadlock

deadlock and livelock

= deadlock is the situation in which a group of threads are
permanently blocked waiting for some resource

= deadlock can happen in many subtle cases
= example: dining philosophers

= here we will study ways of avoiding deadlock situations

= [ivelock is the situation where a group of threads tries to
get some resource, but they never succeed

= the idea is that they have a non-blocking wait

= example: dining philosophers with non-blocking wait

= deadlocks and livelocks can be total or partial

17

example of deadlock

Semaphore s1(1);
Semaphore s2(1);

void *threadA(void *)
{

sl.wait();
s2.wait();

;i.signal();
s2.signal();

}

sl.wait() s2.wait()
TA
T8 _/—_

/\

s2.wait()

void *threadB(void *)
{

s2.wait();
s1.wait();

;Zl.signal();
sl.signal();

\4

AN

sl.wait()

\4

18

graphical situation

TB
release sl

release s2

get sl

get s2

e
oo
B

S

i
\

o

o

o

o

o

o

o
\

,
o
/{_,.—"/ﬁ{_,.—"%

i
-
o /.—"

SRR

£
o
£
o
£
o
£
o

i
//.v"

o
o
o

g g

o
7
e
//
5
e
o
e,
.—"//{_,

o

.
[
2
.
[
//.—"
.
o
o,
2

W

o
2
o
o
2
o
2

o
//.—"///.—"// e
e

7

i

o //

-
-
i
i

£
£

s
b

i

b ’\‘\.
5
\\\

i
2

i

s

g

7

3 S
e
il il

o
i
b

7S 19b

TS ases)a.

7S 9ses|a.

TA

19

raphical situation

TB
release sl

release s2

get sl

get s2

4

A
A
A
Deadlock H
inevitable
> > >
Q Q pn] P
@ ®
@ @ o o TA
) n 8 8
wn
A o

20

example with no deadlock

TB
release sl

release s2

get sl

get s2

4

_4
= (@) =
S @ D @
—~+ 0 t ()
" 2 Q) 7
=))
wn wn
— ND

21

other examples of deadlock

= bad situations can happen even when the resource is not
“on-off”

= consider a memory allocator
= suppose that the maximum memory allocable is 200 Kb

void * threadA(void *) void * threadB(void *)

{ request(80kb); { request(70kb);
request(60kb):; request(80kb);

\ .rélease(140kb); } .rélease(150kb);

consumable and reusable resources

= reusable resources

= it can be safely used by only one thread at time and is not depleted
by the use

= threads must request the resource and later release it, so it can be
reused by other threads

= examples are processor, memory, semaphores, etc.

= consumable resources
= jtis created and destroyed dynamically

= once the resource is acquired by a thread, it is immediately
“destroyed” and cannot be reused

= examples are messages in a FIFO queue, interrupts, I/O data, etc.

23

deadlock with consumable resources

void *threadA(void *) void *threadB(void *)

{ s_receive_from(threadB, msgl); { s_receive_from(threadA, msgl);
.s._.send(threadB, msg2); .s._.send(threadA, msg2);

\ }

s_receive_from(threadB,msgl)

/

TA_ I

\4

TB
_

T

s_receive_from(threadA,msg1l)

\4

conditions for deadlock

= three conditions
= dynamic allocation of dedicated resources (in mutual exclusion)
= only one process may use the resource at the same time

= hold and wait
= a process may hold allocated resources when it blocks

= no preemption

= the resource cannot be revoked
(note: the CPU is a revokable resource)

= if the three above conditions hold and

= circular wait

= a closed chain of threads exists such that each thread holds at least
one resources needed by the next thread in the chain

= then a deadlock can occur!

= these are necessary and sufficient conditions for a
deadlock

25

how to solve the problem of deadlock

= the basic idea is to avoid that one of the previous
conditions hold

= to prevent deadlock from happening we can distinguish
two class of techniques

= static: we impose strict rules in the way resources may be
requested so that a deadlock cannot occur

= dynamic: dynamically, we avoid the system to enter in dangerous
situations

= three strategies

= deadlock prevention (static)

= deadlock avoidance (dynamic)

= deadlock detection (dynamic)

26

deadlock: something that cannot be changed

= there is something that cannot be disallowed, because
some behavior is forced by the interaction between the
different concurrent activities
= mutual exclusion
= communication

= there is nothing we can do!

27

deadlock prevention: three methods

= take all the resources at the same time
= preempt a thread and give the resource to someone else
= resource allocation in a given order

28

deadlock prevention: conditions

= hold and wait

= we can impose the tasks to take all resources at the same time
with a single operation

= this is very restrictive! even if we use the resource for a small
interval of time, we must take it at the beginning!

= reduces concurrency

29

deadlock prevention: conditions

= no preemption
= this technique can be done only if we can actually suspend what
we are doing on a resource and give it to another thread

= for the “processor” resource, this is what we do with a thread
switch!

= for other kinds of resources, we should “undo” what we were doing
on the resource

= this may not be possible in many cases!

30

deadlock prevention: conditions

= circular wait

= This condition can be prevented by defining a linear ordering of the
resources

= for example: we impose that each thread must access resources
in a certain well-defined order

void *threadA(void *) void *threadB(void *)
{

;sli.wait();

s2.wait();

.s.i.signal();

s2.signal();

deadlock prevention: why this strategy works?

= |et us define a oriented graph

= avertex can be
= a thread (round vertex)
= aresource (square vertex)

= an arrow from a thread to a resource denotes that the thread
requires the resource

= an arrow from a resource to a thread denotes that the resource is
granted to the thread

= deadlock definition

= a deadlock happens if at some point in time there is a cycle in the
graph

32

deadlock prevention: graph

{

void *threadA(void *)

sl.wait();
s2.wait();

.s.i.signal();
s2.signal();

void *threadB(void *)

{

s2.wait();
sl.wait();

.s.i.signal();
sl.signal();

33

deadlock prevention: theorem

= if all threads access resources in a given order, a deadlock

cannot occur
= proof:

by contradiction.
suppose that a deadlock occurs. then, there is a cycle.
by hypothesis all threads access resources by order

therefore, each thread is blocked on a resource that has an order
number grater than the resources it holds.

starting from a thread and following the cycle, the order number of
the resource should always increase. however, since there is a
cycle, we go back to the first thread. then there must be a thread T
that holds a resource Ra and requests a Resource Rb with Ra <
Rb

this is a contradiction!

34

deadlock avoidance

= this technique consists in monitoring the system to avoid
deadlock
= we check the behaviour of the system

= if we see that we are going into a dangerous situation, we block
the thread that is doing the request, even if the resource is free

= that algorithm is called the Banker's algorithm
= we skip it :-)

35

deadlock detection

= in this strategy, we monitor the system to check for
deadlocks after they happen

= we look for cycles between threads and resources

= how often should we look?

= it is a complex thing to do, so it takes precious processing time

= it can be done not so often

= a good point to do that is when we lock (but it is computationally
expensive)

= once we discover deadlock, we must recover

= theideaisto
= Kkill some blocked thread
= return an error in the wait statement if there is a cycle
= that is the POSIX approach

36

recovery strategies

1.

2.

3.

4.

abort all threads
= used in almost all OS. the simplest thing to do.

check point

= all threads define safe check points. when the OS discover a
deadlock, all involved threads are restarted to a previous check
point
= problem. they can go in the same deadlock again!

abort one thread at time

= threads are aborted one after the other until deadlock disappears

successively preempt resources
= preempt resources one at time until the deadlock disappears

37

