
Laurea Specialistica in Ingegneria
dell'Automazione

Sistemi in Tempo Reale
Giuseppe Lipari

Introduzione alla concorrenza - IV

2

monitors

 monitors are a language structure equivalent to
semaphores, but cleaner
 a monitor is similar to an object in a OO language
 it contains variables and provides procedures to other software

modules
 only one thread can execute a procedure at a certain time

 any other thread that has invoked the procedure is blocked and waits
for the first threads to exit

 therefore, a monitor implicitely provides mutual exclusion
 the source code that is used to implement the mutual exclusion is

automatically inserted by the compiler
 Example: Java language

 It provides a way to implement monitors through the keyword
Synchronized

3

condition variables

 monitors support synchronization with Condition Variables
 a condition variable is a blocking queue
 two operations are defined on a condition variable

 wait() -> suspends the calling thread on the queue
 signal() -> resume execution of one thread blocked on the queue

 important note:
 wait() and signal() operation on a condition variable are different

from wait and signal on a semaphore!
 there is not any counter in a condition variable!
 if we do a signal on a condition variable with an empty queue, the

signal is lost
 there are 6 ways to implement a monitor construct

 we will only look at the POSIX approach
(that is the same used by the MESA language)

4

CircularArray with monitors

class CircularArray {
int array[10];
int head, tail, num;
Condition empty, full;

public:
CircularArray() : head(0), tail(0), num

(0) {}
void insert(int elem) synchronized;
void extract(int &elem) synchronized;

} queue;

void CircularArray::insert(int elem) synchronized
{

while (num==10) full.wait();
array[head]=elem;
head = (head+1)%10;
num++;
if (num==1) empty.signal();

}

void CircularArray::extract(int &elem) synchronized
{

while (num== 0) empty.wait();
elem = array[tail];
tail = (tail+1)%10;
num--;
if (num == 9) full.signal();

}

models of concurrency: message passing

6

message passing

 message passing systems are based on the basic concept
of message

 two basic operations
 send(destination, message);
 receive(source, &message);

 two variants
 both operations can be synchronous or asynchronous
 receive can be symmetric or asymmetric

7

Producer/Consumer with MP

 the producer executes send(consumer, data)
 the consumer executes receive(producer, data);
 no need for a special communication structure (already

contained in the send/receive semantic)

Producer Consumer

8

resources and message passing
 there are no shared resources in the message passing

model
 all the resources are allocated statically, accessed in a dedicated

way
 each resource is handled by a manager process that is the

only one that have right to access to a resource
 the consistency of a data structure is guaranteed by the

manager process
 there is no more competition, only cooperation!!!

9

synchronous communication

 synchronous send/receive
 no buffers!

producer:
 s_send(consumer, d);

consumer:
 s_receive(producer, &d);

producer consumer

send

receive

blocked

producer consumer

send

receive

blocked

10

async send/ sync receive

 asynchronous send / synchronous receive
 there is probably a send buffer somewhere

producer:
 a_send(consumer, d);

consumer:
 s_receive(producer, &d);

producer consumer

send

receiveproducer consumer

send

receive

blocked

11

asymmetric receive

 symmetric receive
 receive(source, &data);
 the programmer wants a message from a given producer

 asymmetric receive
 source = receive(&data);
 often, we do not know who is the sender

 imagine a web server;
 the programmer cannot know in advance the address of the browser

that will request the service
 many browser can ask for the same service

12

remote procedure call
 in a client server system, a client wants to request an action

to a server
 that is typically done using a remote procedure call (RPC)

client server

RPC

blocked

13

message passing systems

 in message passing
 each resource needs one threads manager
 the threads manager is responsible for giving access to the

resource
 example: let’s try to implement mutual exclusion with

message passing primitives
 one thread will ensure mutual exclusion
 every thread that wants to access the resourec must

 send a message to the manager thread
 access the critical section
 send a message to signal the leaving of the critical section

14

sync send / sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
s_receive_from(source, &d);

}
}

void * thread(void *)
{

int d;
while (true) {

s_send(manager, d);
<critical section>
s_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec

send send

send send

15

with async send and sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
a_send(source,d);
s_receive_from(source,&d);

}
}

void * thread(void *)
{

int d;
while (true) {

a_send(manager, d);
s_receive_from(manager, &d);
<critical section>
a_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec send send

deadlock

17

deadlock and livelock

 deadlock is the situation in which a group of threads are
permanently blocked waiting for some resource

 deadlock can happen in many subtle cases
 example: dining philosophers

 here we will study ways of avoiding deadlock situations

 livelock is the situation where a group of threads tries to
get some resource, but they never succeed
 the idea is that they have a non-blocking wait
 example: dining philosophers with non-blocking wait

 deadlocks and livelocks can be total or partial

18

DEADLOCK!!

example of deadlock

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

Semaphore s1(1);
Semaphore s2(1);

TA

TB

s1.wait()

s2.wait()

s2.wait()

s1.wait()

19

graphical situation

TA

TB

get s1

get s2

get s2

get s1
Deadlock
inevitable

release s2

release s1

release s1

release s2

TA and TB
want s1

TA and TB
want s2

impossible

20

Deadlock
inevitable

graphical situation

TA

TB

get s1

get s2

get s2

get s1

release s2

release s1

release s1

release s2

21

example with no deadlock

TA

TB

get s1

get s2
get s2

get s1

release s2

release s1

release s1

release s2

22

other examples of deadlock

 bad situations can happen even when the resource is not
“on-off”

 consider a memory allocator
 suppose that the maximum memory allocable is 200 Kb

void * threadA(void *)
{

request(80kb);
...
request(60kb);
...
release(140kb);

}

void * threadB(void *)
{

request(70kb);
...
request(80kb);
...
release(150kb);

}

23

consumable and reusable resources

 reusable resources
 it can be safely used by only one thread at time and is not depleted

by the use
 threads must request the resource and later release it, so it can be

reused by other threads
 examples are processor, memory, semaphores, etc.

 consumable resources
 it is created and destroyed dynamically
 once the resource is acquired by a thread, it is immediately

“destroyed” and cannot be reused
 examples are messages in a FIFO queue, interrupts, I/O data, etc.

24

deadlock with consumable resources

void *threadA(void *)
{

s_receive_from(threadB, msg1);
...
s_send(threadB, msg2);
...

}

void *threadB(void *)
{

s_receive_from(threadA, msg1);
...
s_send(threadA, msg2);
...

}

TA

TB

s_receive_from(threadB,msg1)

s_receive_from(threadA,msg1)

25

conditions for deadlock

 three conditions
 dynamic allocation of dedicated resources (in mutual exclusion)

 only one process may use the resource at the same time
 hold and wait

 a process may hold allocated resources when it blocks
 no preemption

 the resource cannot be revoked
(note: the CPU is a revokable resource)

 if the three above conditions hold and
 circular wait

 a closed chain of threads exists such that each thread holds at least
one resources needed by the next thread in the chain

 then a deadlock can occur!
 these are necessary and sufficient conditions for a

deadlock

26

how to solve the problem of deadlock

 the basic idea is to avoid that one of the previous
conditions hold

 to prevent deadlock from happening we can distinguish
two class of techniques
 static: we impose strict rules in the way resources may be

requested so that a deadlock cannot occur
 dynamic: dynamically, we avoid the system to enter in dangerous

situations
 three strategies

 deadlock prevention (static)
 deadlock avoidance (dynamic)
 deadlock detection (dynamic)

27

deadlock: something that cannot be changed
 there is something that cannot be disallowed, because

some behavior is forced by the interaction between the
different concurrent activities
 mutual exclusion
 communication

 there is nothing we can do!

28

deadlock prevention: three methods
 take all the resources at the same time
 preempt a thread and give the resource to someone else
 resource allocation in a given order

29

deadlock prevention: conditions

 hold and wait
 we can impose the tasks to take all resources at the same time

with a single operation
 this is very restrictive! even if we use the resource for a small

interval of time, we must take it at the beginning!
 reduces concurrency

30

deadlock prevention: conditions

 no preemption
 this technique can be done only if we can actually suspend what

we are doing on a resource and give it to another thread
 for the “processor” resource, this is what we do with a thread

switch!
 for other kinds of resources, we should “undo” what we were doing

on the resource
 this may not be possible in many cases!

31

deadlock prevention: conditions

 circular wait
 This condition can be prevented by defining a linear ordering of the

resources
 for example: we impose that each thread must access resources

in a certain well-defined order

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

32

deadlock prevention: why this strategy works?

 let us define a oriented graph
 a vertex can be

 a thread (round vertex)
 a resource (square vertex)

 an arrow from a thread to a resource denotes that the thread
requires the resource

 an arrow from a resource to a thread denotes that the resource is
granted to the thread

 deadlock definition
 a deadlock happens if at some point in time there is a cycle in the

graph

33

deadlock prevention: graph

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

TA

TB

S1

S2

34

deadlock prevention: theorem

 if all threads access resources in a given order, a deadlock
cannot occur

 proof:
 by contradiction.
 suppose that a deadlock occurs. then, there is a cycle.
 by hypothesis all threads access resources by order
 therefore, each thread is blocked on a resource that has an order

number grater than the resources it holds.
 starting from a thread and following the cycle, the order number of

the resource should always increase. however, since there is a
cycle, we go back to the first thread. then there must be a thread T
that holds a resource Ra and requests a Resource Rb with Ra <
Rb

 this is a contradiction!

35

deadlock avoidance

 this technique consists in monitoring the system to avoid
deadlock
 we check the behaviour of the system
 if we see that we are going into a dangerous situation, we block

the thread that is doing the request, even if the resource is free
 that algorithm is called the Banker's algorithm

 we skip it :-)

36

deadlock detection

 in this strategy, we monitor the system to check for
deadlocks after they happen
 we look for cycles between threads and resources
 how often should we look?

 it is a complex thing to do, so it takes precious processing time
 it can be done not so often
 a good point to do that is when we lock (but it is computationally

expensive)
 once we discover deadlock, we must recover

 the idea is to
 kill some blocked thread
 return an error in the wait statement if there is a cycle

 that is the POSIX approach

37

recovery strategies

1. abort all threads
 used in almost all OS. the simplest thing to do.

2. check point
 all threads define safe check points. when the OS discover a

deadlock, all involved threads are restarted to a previous check
point
 problem. they can go in the same deadlock again!

3. abort one thread at time
 threads are aborted one after the other until deadlock disappears

4. successively preempt resources
 preempt resources one at time until the deadlock disappears

