Laurea Specialistica in Ingegneria dell'Automazione

Sistemi in Tempo Reale

Giuseppe Lipari

Introduzione alla concorrenza

Ingegneria dell'Automazione: Sistemi in Tempo Reale

Fundamentals

• Algorithm:

- It is the logical procedure to solve a certain problem
- It is informally specified a a sequence of elementary steps that an "execution machine" must follow to solve the problem
- It is not necessarily expressed in a formal programming language!

• Program:

- It is the implementation of an algorithm in a programming language
- Can be executed several times with dufferent inputs

Process:

Date: 3/03/2005

 An instance of a program that given a sequence of inputs produces a set of outputs

Operating System

- An operating system is a program that
 - Provides an "abstraction" of the physical machine
 - Provides a simple interface to the machine
 - Each part of the interface is a "service"
- An OS is also a resource manager

- With the term "resource" we denote all physical entities of a computing machine
- The OS provides access to the physical resources
- The OS provides abstract resources (for example, a file, a virtual page in memory, etc.)

Levels of abstraction

Ingegneria dell'Automazione: Sistemi in Tempo Reale

Date: 3/03/2005

Giuseppe Lipari

Abstraction mechanisms

Why abstraction?

Date: 3/03/2005

- Programming the HW directly has several drawbacks
 - It is difficult and error-prone
 - It is not portable
- Suppose you want to write a program that reads a text file from disk and outputs it on the screen
 - Without a proper interface it is virtually impossible!

Abstraction Mechanisms

- Application programming interface (API)
 - Provides a convenient and uniform way to access to one service so that
 - HW details are hidden to the high level programmer
 - One application does not depend on the HW
 - The programmer can concentrate on higher level tasks
 - Example

Date: 3/03/2005

• For reading a file, linux and many other unix OS provide the open(), read() system calls that, given a "file name" allow to load the data from an external support

Classification of Operating Systems

- The OS provides an abstraction of a physical machine
 - To allow portability

Date: 3/03/2005

- To make programmer's life easier
- The level of abstraction depends on the application context
 - It means that the kind of services an OS provides depend on which kind of services the application requires
 - General purpouses OS should provide a wide range of services to satisfy as many users as possible
 - Specialised OS provide only a group of specialised services
- OS can be classified depending on the application context

Classification of OS - II

- By objective
 - General purpouse (windows, linux, etc),
 - Servers,
 - RTOS
- By size

Date: 3/03/2005

- Full featured
- Embedded OS
- Nano-kernels
- By internal structure
 - Monolithic
 - Micro-kernel

Services

- Virtual processor
 - An OS provides "concurrency" between processes
 - Many processes are executed at the same time in the same system
 - Each process executes for a fraction of the processor bandwidth (as it were on a dedicated slower processor)
 - Provided by the scheduling sub-system
 - Provided by almost all OS, from nano-kernels to general-purpouse systems

Date: 3/03/2005

Services

Virtual memory

- Physical memory is limited;
- In old systems, the number of concurrent processes was limited by the amount of physical memory
- IDEA: extend the physical memory by using a "fast" mass storage system (disk)
 - Some of the processes stay in memory, some are temporarily saved on the disk
 - When a process must be executed, if it is on the disk it is first loaded in memory and then executed
 - This technique is called "swapping"

Virtual Memory

Advantages

- Virtual infinite memory
- The program is not limited by the size of the physical memory

Disadvantages

- If we have too many programs, we spend most of the time swapping back and forth
- Needs support from the HW (MMU)
 - Small OS (like nano-kernels) do not support VM
- This technique is NOT used in RTOS
 - It can introduce a large and unpredictable delay
 - It is not possible to guarantee a short response time because it depends on the number of processes, on the memory organization, etc.
 Ingegneria dell'Automazione: Sistemi in Tempo Reale

Virtual File System

Basic concepts

- File: sequence of data bytes
 - It can be on a mass storage (hard disk, cd-rom, etc.)
 - It can be on special virtual devices (i.e. RAM disks)
 - It can be on a remote system!
- Directory: list of files
 - Usually organised in a tree
 - Represents how files are organised on the mass storage system

Virtualisation

Date: 3/03/2005

 In most OS, external serial devices (like the console or the video terminal) can be seen as files (i.e. stdin, stout, stderr)

Virtual file system

- A good virtual file system provides additional features:
 - Buffering & caching
 - For optimising I/O from block devices
 - Transactions

Date: 3/03/2005

- For example the Reiser FS
- Fault tolerance capabilities
 - For example, the RAID system
- Virtual file system is not provided by all OS categories
 - Micro and nano kernels do not even provide a file system!