
Sistemi in tempo reale

Shared resources

Giuseppe Lipari

Scuola Superiore Sant’Anna

Pisa -Italy

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 1/21



Interacting tasks

• Until now, we have considered only independent tasks
◦ a task never blocks or suspends
◦ it can only be suspended when it finishes its istance (job)

• However, in reality, many tasks exchange data through shared
memory

• Consider as an example three periodic tasks:
◦ One reads the data from the sensors and applies a filter. The results of the

filter are stored in memory.
◦ The second task reads the filtered data and computes some control law

(updating the state and the outputs); both the state and the outputs are
stored in memory;

◦ finally, a third periodic task reads the outputs from memory and writes on the
actuator device.

• All three tasks access data in the shared memory
• Conflicts on accessing this data in concurrency could make the

data structures inconsistent.
inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 2/21



Resources and critical sections

• The shared data structure is called resource;
• A piece of code accessing the data structure is called critical

section;
• Two or more critical sections on the same resource must be

executed in mutual exclusion;
• Therefore, each data structure should be protected by a mutual

exclusion mechanism;
• In this lecture, we will study what happens when resources are

protected by mutual exclusion semaphores.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 3/21



Notation

• The resource and the corresponding mutex semaphore will be
denoted by symbol Sj .

• A system consists of:
◦ A set of N periodic (or sporadic) tasks T = {τ1, . . . , τN};
◦ A set of shared resources S = {S1, . . . , SM};
◦ We say that a task τi uses resource Sj if it accesses the

resource with a critical section.
◦ The k-th critical of τi on Sj is denoted with csi,j(k).
◦ The length of the longest critical section of τi on Sj is denoted

by ξi,j .

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 4/21



Blocking and priority inversion

• A blocking condition happens when a high priority tasks wants to
access a resource that is held by a lower priority task.

• Consider the following example, where p1 > p2.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2
L(S)

S

L(S)

S

U(S)

S

U(S)

• From time 4 to 7, task τ1 is blocked by a lower priority taskτ2; this is a priority
inversion.

• Priority inversion is not avoidable; in fact, τ1 must wait for τ2 to leave the critical
section.

• However, in some cases, the priority inversion could be too large.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 5/21



Example of priority inversion

• Consider the following example, with p1 > p2 > p3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

• This time the priority inversion is very large: from 4 to 12.
• The problem is that, while τ1 is blocked, τ2 arrives and preempt τ3 before it can

leave the critical section.
• If there are other medium priority tasks, they could preempt τ3 as well.
• Potentially, the priority inversion could be unbounded!

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 6/21



The Mars Pathfinder

• This is not only a theoretical problem. It may happen in real cases.
• The most famous example of such problem was found during the

Mars Pathfinder mission.
◦ A small robot, the Sojourner rover, was sent to Mars to explore the martian environment and

collect useful information. The on-board control software consisted of many software threads,
scheduled by a fixed priority scheduler. One high priority thread and one low priority thread were
using the same software data structure through a shared semaphore. The semaphore was
actually used by a library that provided high level communication mechanisms among threads,
namely the pipe() mechanism. At some instant, it happened that the low priority thread was
interrupted by medium priority threads while blocking the high priority thread on the semaphore.
At the time of the Mars Pathfinder mission, the problem was already known. The first accounts of
the problem and possible solutions date back to early ’70s. However, the problem became widely
known in the real-time community since the seminal paper of Sha, Rajkumar and Lehoczky, who
proposed the Priority Inheritance Protocol and the Priority Ceiling Protocol to bound the time a
real-time task can be blocked on a mutex semaphore.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 7/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S

◦ Task τ3 inherits the priority of τ1

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



The Priority Inheritance protocol

• The solution of the problem is rather simple;
◦ While the low priority task blocks an higher priority task, it inherits the priority

of the higher priority task;
◦ In this way, every medium priority task cannot make preemption.
◦ In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S)

S

L(S)

S S

U(S)

S

U(S)

◦ Task τ3 inherits the priority of τ1

◦ Task τ2 cannot preempt τ3 (p2 < p1)

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 8/21



Comments

• The blocking (priority inversion) is now bounded to the length of
the critical section of task τ3

• Tasks with intermediate priority τ2 cannot interfere with τ1

• However, τ2 has a blocking time, even if it does not use any
resource
◦ This is called indirect blocking and it is due to the fact that τ2 is in the middle

between a higher priority task τ1 and a lower priority task τ3 which use the
same resource.

◦ This blocking time must be computed and taken into account in the formula
as any other blocking time.

• It remains to understand:
◦ What is the maximum blocking time for a task
◦ How we can account for blocking times in the schedulability analysis

• From now on, the maximum blocking time for a task τi is denoted
by Bi.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 9/21



Nested critical sections

• Critical sections can be nested:
◦ it means that, while a task τ is accessing a resource S1, it can lock a

resource S2.

• When critical sections are nested, we can have multiple
inheritance

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 10/21



Multiple inheritance

• Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested inside S1; Task τ3

uses only S2.
• p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)

S1

L(S2)

S2

U(S2)

S2

U(S2)

S1

U(S1)

S1

U(S1)

• At time t = 7 task τ3 inherits the priority of τ2, which at time 5 had inherited the
priority of τ1. Hence, the priority of τ3 is p1.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 11/21



Deadlock problem

• When using nested critical section, the problem of deadlock can
occur; i.e. two or more tasks can be blocked waiting for each
other.

• The priority inheritance protocol does not solve automatically the
problem of deadlock, as it is possible to see in the following
example.
◦ Task τ1 uses S2 inside S1, while task τ2 uses S1 inside S2.

0 2 4 6 8 10

τ1

τ2 L(S2)

S2

L(S1)

S1

L(S2)

S2

L(S1)

• While τ1 is blocked on S2, which is held by τ2, τ2 is blocked on S1 which is held
by τ1: deadlock!

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 12/21



Deadlock avoidance

• In the previous example, the priority inheritance protocol does not
help.

• To avoid deadlock, it is possible to use a strategy for nested
critical section;
◦ The problem is due to the fact that resouces are accessed in a random order

by τ1 and τ2.
◦ One possibility is to decide an order a-priori before writing the program. For

example that resources must be accessed in the order given by their index
(S1 before S2 before S3, and so on).

◦ With this rule, task τ2 is not legal because it accesses S1 inside S2, violating
the ordering.

◦ If τ2 accesses the resources in the correct order (S2 inside S1, the deadlock
is automatically avoided).

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 13/21



The Priority Inheritance Protocol

• Summarising, the main rules are the following;
◦ If a task τi is blocked on a resource protected by a mutex semaphore S, and

the resource is locked by task τj , then τj inherits the priority of τi;
◦ If τj is itself blocked on another semaphore by a task τk, then τk inherits the

priority of τi (multiple inheritance);
◦ If τk is blocked, the chain of blocked tasks is followed until a non-blocked

task is found that inherits the priority of τi.
◦ When a task unlocks a semaphore, it returns to the priority it had when

locking it.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 14/21



Computing the maximum blocking time

• We will compute the maximum blocking time only in the case of
non nested critical sections.
◦ Even if we avoid the problem of deadlock, when critical sections are nested,

the computation of the blocking time becomes very complex due to multiple
inheritance.

◦ If critical section are not nested, multiple inheritance cannot happen, and the
computation of the blocking time becomes simpler.

• To compute the blocking time, we must consider the following two
important theorems:
◦ Theorem 1 Under the priority inheritance protocol, a task can be blocked only

once on each different semaphore.
◦ Theorem 2 Under the priority inheritance protocol, a task can be blocked by

another lower priority task for at most the duration of one critical section.

• This means that we have to consider that a task can be blocked
more than once, but only once per each resource and once by
each task.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 15/21



Blocking time computation

• We must build a resource usage table.
◦ On each row we, put a task in decreasing order of priority;
◦ On each column we put a resource (the order is not important);
◦ On each cell (i, j) we put ξi,j , i.e. the length of the longest critical section of

task τi on resource Sj , or 0 if the task does not use the resource.
• A task can be blocked only by lower priority tasks:

◦ Then, for each task (row), we must consider only the rows below (tasks with
lower priority).

• A task can be blocked only on resources that it uses directly, or used by higher
priority tasks (indirect blocking);
◦ For each task, we must consider only those column on which it can be

blocked (used by itself or by higher priority tasks).

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 16/21



Example of blocking time computation

S1 S2 S3 B

τ1 2 0 0 ?

τ2 0 1 0 ?

τ3 0 0 2 ?

τ4 3 3 1 ?

τ5 1 2 1 ?

• let’s start from B1

• τ1 can be blocked only on S1. Therefore, we must consider only
the first column, and take the maximum, which is 3. Therefore,
B1 = 3.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 17/21



Example of blocking time computation

S1 S2 S3 B

τ1 2 0 0 3

τ2 0 1 0 ?

τ3 0 0 2 ?

τ4 3 3 1 ?

τ5 1 2 1 ?

• Now τ2: it can be blocked on S1 (indirect blocking) and on S2. Therefore, we
must consider the first 2 columns;

• Then, we must consider all cases where two distinct lower priority tasks between
τ3, τ4 and τ5 access S1 and S2, sum the two contributions, and take the
maximum;

• The possibilities are:
◦ τ4 on S1 and τ5 on S2: → 5;
◦ τ4 on S2 and τ5 on S1: → 4;

• The maximum is B2 = 5.
inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 18/21



Example of blocking time computation

S1 S2 S3 B

τ1 2 0 0 3

τ2 0 1 0 5

τ3 0 0 2 ?

τ4 3 3 1 ?

τ5 1 2 1 ?

• Now τ3;
• It can be blocked on all 3 resources. We must consider all columns;
• The possibilities are:

◦ τ4 on S1 and τ5 on S2: → 5;
◦ τ4 on S2 and τ5 on S1 or S3: → 4;
◦ τ4 on S3 and τ5 on S1: → 2;
◦ τ4 on S3 and τ5 on S2 or S3: → 3;

• The maximum is B3 = 5.

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 19/21



Example of blocking time computation

S1 S2 S3 B

τ1 2 0 0 3

τ2 0 1 0 5

τ3 0 0 2 5

τ4 3 3 1 ?

τ5 1 2 1 ?

• Now τ4;
• It can be blocked on all 3 resources. We must consider all columns; However, it

can be blocked only by τ5.
• The maximum is B4 = 2.
• τ5 cannot be blocked by any other task (because it is the lower priority task!);

B5 = 0;

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 20/21



Example: Final result

S1 S2 S3 B

τ1 2 0 0 3

τ2 0 1 0 5

τ3 0 0 2 5

τ4 3 3 1 2

τ5 1 2 1 0

inher.tex – Sistemi in tempo reale – Giuseppe Lipari – 7/6/2005 – 12:35 – p. 21/21


	Interacting tasks
	Resources and critical sections
	Notation
	Blocking and priority inversion
	Example of priority inversion
	The Mars Pathfinder
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol
	The Priority Inheritance protocol

	Comments
	Nested critical sections
	Multiple inheritance
	Deadlock problem
	Deadlock avoidance
	The Priority Inheritance Protocol
	Computing the maximum blocking time
	Blocking time computation
	Example of blocking time computation
	Example of blocking time computation
	Example of blocking time computation
	Example of blocking time computation
	Example: Final result

