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The HW/SW platform

● Let's start from the bottom: typical architecture of a 
micro-controller
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The processor

● Set of registers
– IP: instruction pointer
– SP: stack pointer
– A0-A3: general registers
– CR: control register

● Execution unit
– Arithmetic unit
– Fetching unit
– Branch prediction unit

● Other components
– Pipeline
– Cache
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Processor registers
● User visible registers

– Used as temporary buffers for processor operations
– Can be in any number

● RISC architectures: array of registers
● CISC architectures: set of registers dedicated to specific operations

● Control and Status registers
– IP Instruction pointer
– SP Stack Pointer
– CR Control Register (or PSW Program Status Word)
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Modes of operation
● Many processors have at least two modes of operation

– Supervisor mode
● All instructions are allowed 
● Kernel routines execute in supervisor mode
● The OS must access all features of the system

– User mode
● Not all instructions are allowed
● User programs execute in user mode
● Some instruction (for example, disabling interrupts) cannot be 

invoked directly be the user program
● Switching

– It is possible to switch from user mode to supervisor mode  with 
special instructions
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Main Memory and bus
● The RAM

– Sequence of data locations
– Contains both instructions (TEXT) and data variables

● The bus
– A set of “wires”

● Address wires
● Data wires

– The number of data wires is the amount of bits that 
can be read with one memory access

● Current PC buses: 32 bit
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Instruction execution
● We distinguish at least two phases

– Fetching: the instruction is read from the memory
– Execute: the instruction is executed

 Data processing instr. – the result is stored in registers
 Load instr. – the data is loaded from main memory
 Store – the data is stored in main memory
 Control – the flow of execution may change (change IP)

– Some instruction may be the combination of different types

Start HaltFetch next
instruction

Execute
instruction
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Stack Frames
● The stack is used to

– Save local variables
– Implement function calling

● Every time a function is called
– The parameters are saved on the stack
– Call <address>: The current IP is saved on the 

stack
– The routine saves the registers that will be 

modified on the stack
– The local variables are defined on the stack
– When the function is over the stack is cleaned and 

the RET instruction is called which restores IP
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Stack Frames
● The stack is used to

– Save local variables
– Implement function calling

● Every time a function is called
– The parameters are saved on the stack
– Call <address>: The current IP is saved 

on the stack
– The routine saves the registers that will 

be modified on the stack
– The local variables are defined on the 

stack
– When the function is over the stack is 

cleaned and the RET instruction is 
called which restores IP
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External devices

● I/O devices
– Set of data registers 
– Set of control registers
– mapped on certain 

memory locations

D0 CR0

CR1

CR2

D1

D2

I/O device interface

BUS

CPU
IP

SP

R0

R1

R2

R3CR

Memory

A3B0
A3B2
A3B4
A3B6
A3B8
A3BA
A3BC

…

FF00

FF02

FF04

FF06

FF08

FF0A



Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

I/O operations
● Structure of an I/O operation

– Phase 1: prepare the device for the operation
● In case of output, data is transferred to the data buffer 

registers
● The operation parameters are set with the control 

registers
● The operation is triggered

– Phase 2: wait for the operation to be performed
● Devices are much slower than the processor
● It may take a while to get/put the data on the device

– Phase 3: complete the operation
● Usually, cleaning up the control registers
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Example of input operation

● Phase 1: nothing
● Phase 2: wait until bit 0 of CR0 becomes 1
● Phase 3: read data from D0 and reset bit 0 of CR0
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Example of output operation
● Phase 1: write data to D1 and set bit 0 of CR1
● Phase 2: wait for bit 1 of CR1 to become 1
● Phase 3: clean CR1
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Temporal diagram
● Polling

– This technique is called “polling” because the 
processor “polls” the device until the operation is 
completed

– In general, it can be a waste of time
– The processor can executed something useful while 

the device is working
– How the processor can know when the device has 

completed the I/O operation?
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Interrupts
● Every processor supports an interrupt mechanism

– The processor has a special pin, called “interrupt request 
(IRQ)”

– Upon reception of a signal on the IRQ pin, 
● If interrupts are enabled, the processor suspends execution and 

invokes an “interrupt handler” routine
● If interrupts are disabled, the request is pending and will be served 

as soon as the interrupts are enabled

Start HaltFetch next
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Interrupt
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Interrupt handling
● Every interrupt is associated one 

“handler”
● When the interrupt arrives

– The processor suspend what is doing
– Pushes CR on the stack
– Calls the handler (pushes the IP on the 

stack)
– The handler saves the registers that will be 

modified on the stack
– Executes the interrupt handling code
– Restores the registers
– Executes IRET (restores IP and CR) 
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Input with interrupts
● Phase 1: do nothing
● Phase 2: execute other code
● Phase 3: upon reception of the interrupt, read data from 

D0, clean CR0 and return to the interrupted code
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Interrupts
● Let’s compare polling and interrupt
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The meaning of phase 3
● Phase 3 is used to signal the device that the 

interrupt has been served
– It is an handshake protocol

● The device signal the interrupt
● The processor serves the interrupt and exchange the 

data
● The processor signal the device that it has finished 

serving the interrupt
● Now a new interrupt from the same device can be 

raised
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Interrupt  disabling
● Two special instructions

– STI: enables interrupts
– CLI: disables interrupts
– These instructions are privileged

● Can be done only in supervisor mode
– When an interrupt arrives the processor goes 

automatically in supervisor mode

Normal
code

Interrupt
handler

CLI STI

Pending
Interrupt



Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Many sources of interrupts
● Usually, processor have one single IRQ pin

– However, there are several different I/O devices
– Intel processors use an external Interrupt Controller

● 8 IRQ input lines, one output line
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Nesting interrupts
● Interrupt disabling

– With CLI, all interrupts are disabled
● When an interrupt is raised, 

– before calling the interrupt handler, interrupts are 
automatically disabled

– However, it is possible to explicitely call STI to re-
enable interrupts even during an interrupt handler

– In this way, we can “nest interrupts”
● One interrupt handler can itself be interrupted by 

another interrupt
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Interrupt controller
● Interrupts have priority

– IRQ0 has the highest priority, IRQ7 the lowest
● When an interrupt from a I/O device is raised

– If there are other interrupts pending
● If it is the highest priority interrupt, it is forwarded to the 

processor (raising the IRQ line)
● Otherwise, it remains pending, and it will be served 

when the processor finishes serving the current interrupt
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Nesting interrupts
● Why nesting interrupts?

– If interrupts are not nested, important services many 
be delayed too much

● For example, IRQ0 is the timer interrupt
● The timer interrupt is used to set the time reference of 

the system
● If the timer interrupt is delayed too much, it can get lost 

(i.e. another interrupt  from the timer could arrive before 
the previous one is served)

● Losing a timer interrupt can cause losing the correct 
time reference in the OS

● Therefore, the timer interrupt has the highest priority 
and can inetrrupt everything, even another “slower” 
interrupt



Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Nested interrupts
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Atomicity
● An hardware instruction is atomic if it cannot be 

“interleaved” with other instructions
– Atomic operations are always sequentialized
– Atomic operations cannot be interrupted

● They are safe operations
● For example, transferring one word from memory to 

register or viceversa
– Non atomic operations can be interrupted

● They are not “safe” operations
● Non elementary operations are not atomic
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Non atomic operations
● Consider a “simple” operation like

 
x = x+1;

 In assembler
 LD  R0, x

INC R0
ST x,RO

 A simple operation like incrementing a memory variable, 
may be composed by three machine instructions

 If the same operation is done inside an interrupt handler, 
an inconsistency can arise!
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Interrupt on non-atomic operations

int x=0;

...
x = x + 1;
...

Normal code
void handler(void)
{
    ...
    x = x + 1;
    ....
}

Handler code

...
LD R0, x
INC R0
ST x, RO
...

Save registers
...
LD R0, x
INC R0
ST x, RO
...
Restore registers

?R0

0x

CPU

memory

0

Saved registers

0

01

1

01

1
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Solving the problem in single 
processor

● One possibility is to disable interrupts in “critical 
sections”

...
CLI
LD R0, x
INC R0
ST x, RO
STI
...

Save registers
...
LD R0, x
INC R0
ST x, RO
...
Restore registers
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Multi-processor systems
● Symmetric multi-processors (SMP)

– Identical processors
– One shared memory

CPU 0 CPU 1 CPU 2 CPU 3

Memory
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Multi-processor systems
● Two typical organisations

– Master / Slave
● The OS runs on one processor only (master), CPU0
● When a process requires a OS service, sends a 

message to CPU0
– Symmetric

● One copy of the OS runs indipendentely on each 
processor

● They must synchronise on common data structures
● We will analyse this configuration later in the course
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Low level synchronisation in SMP
● The atomicity problem cannot be solved by 

disabling the interrupts!
– If we disable the interrupts, we protect the code from 

interrupts. 
– It is not easy to protect from other processors

...
LD R0, x
INC R0
ST x, RO
...

...
LD R0, x
INC R0
ST x, RO
...

...
LD R0, x (CPU 0)
LD R0, x (CPU 1)
INC R0 (CPU 0)
INC R0 (CPU 1)
ST x, R0 (CPU 0)
ST x, R0 (CPU 1)
...

CPU 0

CPU 1
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XCH and TST 
are atomic!

Low level synchronisation in SMP 
● Most processors support some special instruction

– XCH Exchange register with memory location
– TST If memory location = 0, set location to 1 and 

return true (1), else return false (0)

void  xch(register R, memory x)
{

int tmp;
tmp = R; R = x; x=tmp;

}

int  tst(int x)
{

if (x == 1) return 0;
else {

x=1;
return 1;

}
}
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Locking in multi-processors
● We define one variable s

– If s == 0, then we can perform the critical operation
– If s == 1, the must wait before performing the critical operation

● Using XCH or TST we can implement two functions:
– lock() and unlock()

void lock(int s)
{

int a = 1;
while (a==1) XCH (s,a);

}

void lock(int x)
{

while (TST (s) == 0);
}

void unlock(int s)
{

s = 0;
}
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Locking in multi-processors
L0: TST s

JZ L0
LD R0, x
INC R0
ST x, RO
LD R1, 0
ST s, R1

...

TST s (CPU 0)
TST s (CPU 1)
JZ L0 (CPU 0)
JZ L0 (CPU 1)
LD R0, x (CPU 0)
TST s (CPU 1)
INC R0 (CPU 0)
JZ L0 (CPU 1)
ST x, R0 (CPU 0)
TST  s (CPU 1)
LD R1, 0 (CPU 0)
JZ L0 (CPU 1)
ST s, R1 (CPU 0)
TST s (CPU 1)
... (CPU 0)
JZ L0 (CPU 1)
... (CPU 0)
LD R0, x (CPU 1)

CPU 0

CPU 1

L0: TST s
JZ L0
LD R0, x
INC R0
ST x, RO
LD R1, 0
ST s, R1

...
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Locking
● The lock / unlock operations are “safe”

– No matter how you interleave the operations, there is 
no possibility that the “critical parts interleave

– However, lock() is an active wait and a possible wast of 
time

● The problem of locking is very general and will be 
analysed and solved in greater details later


