
Date: 2/21/04 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

 Laurea Specialistica in Ingegneria
dell'Automazione

Sistemi in Tempo Reale
Giuseppe Lipari

Richiami di Architetture dei
Calcolatori

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

The HW/SW platform

● Let's start from the bottom: typical architecture of a
micro-controller

CPU

Memory

Interrupt
Controller

Devices
(A/D and D/A)

Bus
Arbiter

DMA
controller

Bus

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

The processor

● Set of registers
– IP: instruction pointer
– SP: stack pointer
– A0-A3: general registers
– CR: control register

● Execution unit
– Arithmetic unit
– Fetching unit
– Branch prediction unit

● Other components
– Pipeline
– Cache

CPU

IP

SP

R0

R1

R2

R3

Execution
Units

CR

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Processor registers
● User visible registers

– Used as temporary buffers for processor operations
– Can be in any number

● RISC architectures: array of registers
● CISC architectures: set of registers dedicated to specific operations

● Control and Status registers
– IP Instruction pointer
– SP Stack Pointer
– CR Control Register (or PSW Program Status Word)

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Modes of operation
● Many processors have at least two modes of operation

– Supervisor mode
● All instructions are allowed
● Kernel routines execute in supervisor mode
● The OS must access all features of the system

– User mode
● Not all instructions are allowed
● User programs execute in user mode
● Some instruction (for example, disabling interrupts) cannot be

invoked directly be the user program
● Switching

– It is possible to switch from user mode to supervisor mode with
special instructions

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Main Memory and bus
● The RAM

– Sequence of data locations
– Contains both instructions (TEXT) and data variables

● The bus
– A set of “wires”

● Address wires
● Data wires

– The number of data wires is the amount of bits that
can be read with one memory access

● Current PC buses: 32 bit

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Instruction execution
● We distinguish at least two phases

– Fetching: the instruction is read from the memory
– Execute: the instruction is executed

 Data processing instr. – the result is stored in registers
 Load instr. – the data is loaded from main memory
 Store – the data is stored in main memory
 Control – the flow of execution may change (change IP)

– Some instruction may be the combination of different types

Start HaltFetch next
instruction

Execute
instruction

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Stack Frames
● The stack is used to

– Save local variables
– Implement function calling

● Every time a function is called
– The parameters are saved on the stack
– Call <address>: The current IP is saved on the

stack
– The routine saves the registers that will be

modified on the stack
– The local variables are defined on the stack
– When the function is over the stack is cleaned and

the RET instruction is called which restores IP

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Stack Frames
● The stack is used to

– Save local variables
– Implement function calling

● Every time a function is called
– The parameters are saved on the stack
– Call <address>: The current IP is saved

on the stack
– The routine saves the registers that will

be modified on the stack
– The local variables are defined on the

stack
– When the function is over the stack is

cleaned and the RET instruction is
called which restores IP

Stack

Parameters

IP
R0
R1
R2
x
y

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

External devices

● I/O devices
– Set of data registers
– Set of control registers
– mapped on certain

memory locations

D0 CR0

CR1

CR2

D1

D2

I/O device interface

BUS

CPU
IP

SP

R0

R1

R2

R3CR

Memory

A3B0
A3B2
A3B4
A3B6
A3B8
A3BA
A3BC

…

FF00

FF02

FF04

FF06

FF08

FF0A

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

I/O operations
● Structure of an I/O operation

– Phase 1: prepare the device for the operation
● In case of output, data is transferred to the data buffer

registers
● The operation parameters are set with the control

registers
● The operation is triggered

– Phase 2: wait for the operation to be performed
● Devices are much slower than the processor
● It may take a while to get/put the data on the device

– Phase 3: complete the operation
● Usually, cleaning up the control registers

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Example of input operation

● Phase 1: nothing
● Phase 2: wait until bit 0 of CR0 becomes 1
● Phase 3: read data from D0 and reset bit 0 of CR0

BUS

CPU
IP

SP

R0

R1

R2

R3CR

D0 CR0

CR1

CR2

D1

D2

I/O device interface

FF00

FF02

FF04

FF06

FF08

FF0A

CR0D0 CR0D0 R0

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Example of output operation
● Phase 1: write data to D1 and set bit 0 of CR1
● Phase 2: wait for bit 1 of CR1 to become 1
● Phase 3: clean CR1

BUS

CPU
IP

SP

R0

R1

R2

R3CR

D0 CR0

CR1

CR2

D1

D2

I/O device interface

FF00

FF02

FF04

FF06

FF08

FF0A

CR1D1D1

R0

CR1

R0

CR1

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Temporal diagram
● Polling

– This technique is called “polling” because the
processor “polls” the device until the operation is
completed

– In general, it can be a waste of time
– The processor can executed something useful while

the device is working
– How the processor can know when the device has

completed the I/O operation?

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Interrupts
● Every processor supports an interrupt mechanism

– The processor has a special pin, called “interrupt request
(IRQ)”

– Upon reception of a signal on the IRQ pin,
● If interrupts are enabled, the processor suspends execution and

invokes an “interrupt handler” routine
● If interrupts are disabled, the request is pending and will be served

as soon as the interrupts are enabled

Start HaltFetch next
instruction

Execute
instruction

Interrupts?
Serve

Interrupt

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Interrupt handling
● Every interrupt is associated one

“handler”
● When the interrupt arrives

– The processor suspend what is doing
– Pushes CR on the stack
– Calls the handler (pushes the IP on the

stack)
– The handler saves the registers that will be

modified on the stack
– Executes the interrupt handling code
– Restores the registers
– Executes IRET (restores IP and CR)

Stack

CR

IP

R0

R1

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Input with interrupts
● Phase 1: do nothing
● Phase 2: execute other code
● Phase 3: upon reception of the interrupt, read data from

D0, clean CR0 and return to the interrupted code

BUS

CPU
IP

SP

R0

R1

R2

R3CR

D0 CR0

CR1

CR2

D1

D2

I/O device interface

FF00

FF02

FF04

FF06

FF08

FF0A

CR0D0 CR0D0 R0

IRQ

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Interrupts
● Let’s compare polling and interrupt

Normal
code

Interrupt
handler Phase 1

Phase 2

Phase 3

Polling
code

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

The meaning of phase 3
● Phase 3 is used to signal the device that the

interrupt has been served
– It is an handshake protocol

● The device signal the interrupt
● The processor serves the interrupt and exchange the

data
● The processor signal the device that it has finished

serving the interrupt
● Now a new interrupt from the same device can be

raised

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Interrupt disabling
● Two special instructions

– STI: enables interrupts
– CLI: disables interrupts
– These instructions are privileged

● Can be done only in supervisor mode
– When an interrupt arrives the processor goes

automatically in supervisor mode

Normal
code

Interrupt
handler

CLI STI

Pending
Interrupt

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Many sources of interrupts
● Usually, processor have one single IRQ pin

– However, there are several different I/O devices
– Intel processors use an external Interrupt Controller

● 8 IRQ input lines, one output line

BUS

CPU
IRQ

IRQ0
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

I/O
Device

I/O
Device

In
te

rr
u p

t
C

on
t r

o l
le

r

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Nesting interrupts
● Interrupt disabling

– With CLI, all interrupts are disabled
● When an interrupt is raised,

– before calling the interrupt handler, interrupts are
automatically disabled

– However, it is possible to explicitely call STI to re-
enable interrupts even during an interrupt handler

– In this way, we can “nest interrupts”
● One interrupt handler can itself be interrupted by

another interrupt

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Interrupt controller
● Interrupts have priority

– IRQ0 has the highest priority, IRQ7 the lowest
● When an interrupt from a I/O device is raised

– If there are other interrupts pending
● If it is the highest priority interrupt, it is forwarded to the

processor (raising the IRQ line)
● Otherwise, it remains pending, and it will be served

when the processor finishes serving the current interrupt

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Nesting interrupts
● Why nesting interrupts?

– If interrupts are not nested, important services many
be delayed too much

● For example, IRQ0 is the timer interrupt
● The timer interrupt is used to set the time reference of

the system
● If the timer interrupt is delayed too much, it can get lost

(i.e. another interrupt from the timer could arrive before
the previous one is served)

● Losing a timer interrupt can cause losing the correct
time reference in the OS

● Therefore, the timer interrupt has the highest priority
and can inetrrupt everything, even another “slower”
interrupt

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Nested interrupts

Normal
code

Slow Interrupt
handler

High priority
Interrupt handler

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Atomicity
● An hardware instruction is atomic if it cannot be

“interleaved” with other instructions
– Atomic operations are always sequentialized
– Atomic operations cannot be interrupted

● They are safe operations
● For example, transferring one word from memory to

register or viceversa
– Non atomic operations can be interrupted

● They are not “safe” operations
● Non elementary operations are not atomic

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Non atomic operations
● Consider a “simple” operation like

x = x+1;

 In assembler
 LD R0, x

INC R0
ST x,RO

 A simple operation like incrementing a memory variable,
may be composed by three machine instructions

 If the same operation is done inside an interrupt handler,
an inconsistency can arise!

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Interrupt on non-atomic operations

int x=0;

...
x = x + 1;
...

Normal code
void handler(void)
{
 ...
 x = x + 1;

}

Handler code

...
LD R0, x
INC R0
ST x, RO
...

Save registers
...
LD R0, x
INC R0
ST x, RO
...
Restore registers

?R0

0x

CPU

memory

0

Saved registers

0

01

1

01

1

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Solving the problem in single
processor

● One possibility is to disable interrupts in “critical
sections”

...
CLI
LD R0, x
INC R0
ST x, RO
STI
...

Save registers
...
LD R0, x
INC R0
ST x, RO
...
Restore registers

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Multi-processor systems
● Symmetric multi-processors (SMP)

– Identical processors
– One shared memory

CPU 0 CPU 1 CPU 2 CPU 3

Memory

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Multi-processor systems
● Two typical organisations

– Master / Slave
● The OS runs on one processor only (master), CPU0
● When a process requires a OS service, sends a

message to CPU0
– Symmetric

● One copy of the OS runs indipendentely on each
processor

● They must synchronise on common data structures
● We will analyse this configuration later in the course

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Low level synchronisation in SMP
● The atomicity problem cannot be solved by

disabling the interrupts!
– If we disable the interrupts, we protect the code from

interrupts.
– It is not easy to protect from other processors

...
LD R0, x
INC R0
ST x, RO
...

...
LD R0, x
INC R0
ST x, RO
...

...
LD R0, x (CPU 0)
LD R0, x (CPU 1)
INC R0 (CPU 0)
INC R0 (CPU 1)
ST x, R0 (CPU 0)
ST x, R0 (CPU 1)
...

CPU 0

CPU 1

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

XCH and TST
are atomic!

Low level synchronisation in SMP
● Most processors support some special instruction

– XCH Exchange register with memory location
– TST If memory location = 0, set location to 1 and

return true (1), else return false (0)

void xch(register R, memory x)
{

int tmp;
tmp = R; R = x; x=tmp;

}

int tst(int x)
{

if (x == 1) return 0;
else {

x=1;
return 1;

}
}

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Locking in multi-processors
● We define one variable s

– If s == 0, then we can perform the critical operation
– If s == 1, the must wait before performing the critical operation

● Using XCH or TST we can implement two functions:
– lock() and unlock()

void lock(int s)
{

int a = 1;
while (a==1) XCH (s,a);

}

void lock(int x)
{

while (TST (s) == 0);
}

void unlock(int s)
{

s = 0;
}

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Locking in multi-processors
L0: TST s

JZ L0
LD R0, x
INC R0
ST x, RO
LD R1, 0
ST s, R1

...

TST s (CPU 0)
TST s (CPU 1)
JZ L0 (CPU 0)
JZ L0 (CPU 1)
LD R0, x (CPU 0)
TST s (CPU 1)
INC R0 (CPU 0)
JZ L0 (CPU 1)
ST x, R0 (CPU 0)
TST s (CPU 1)
LD R1, 0 (CPU 0)
JZ L0 (CPU 1)
ST s, R1 (CPU 0)
TST s (CPU 1)
... (CPU 0)
JZ L0 (CPU 1)
... (CPU 0)
LD R0, x (CPU 1)

CPU 0

CPU 1

L0: TST s
JZ L0
LD R0, x
INC R0
ST x, RO
LD R1, 0
ST s, R1

...

Data: 24/02/2004 Ingegneria dell'Automazione: Sistemi in Tempo Reale Giuseppe Lipari

Locking
● The lock / unlock operations are “safe”

– No matter how you interleave the operations, there is
no possibility that the “critical parts interleave

– However, lock() is an active wait and a possible wast of
time

● The problem of locking is very general and will be
analysed and solved in greater details later

