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Modes

• The system can have different working modes
• Each mode defines the same system under different working

conditions;
◦ As an example, consider an airplane;
◦ Typical modes are take-off, cruise, and landing;
◦ During each mode, the system has different control goals; and it must run

different control algorithms.
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Modes and transistions

• Modes can be represented by a state machine. For example,
consider the previous example of airplane control:

Stop Roll Take off

Landing Approach Fly

start

stop

clear to go

quote

destination

clear to land

lined up
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Modes and transistions

• A mode is a node in the diagram (a state)
• A transition is an edge between two nodes:

◦ A transition happens when certain conditions are verified;
◦ For example, a user command, an internal condition, an external condition;

• Upon the occurrence of a transition:
◦ terminate all tasks that are in the current mode and will not be active in the

new mode;
◦ call a transition function;
◦ activate the new set of tasks to be executed.
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Modes and tasks

• To implement modes:
• In general, there will be one global variable that identifies the

current working mode (currmode);
• One manager task that identifies when modes must be changed;
• Modes can be implemented in two basic ways;

1. Type 1 A fixed set of tasks for all the modes; each task can execute different
algorithms depending on the current mode;

2. Type 2 A different set of tasks for each mode.

• Of course, it is also possible to mix the two implementations.
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Mode changes and consistency

• There are several problems the designer must deal with when
designing an multi-mode real-time system;

• The main problem is what happens during the transition between
two modes. In particular, we must deadl with
1. How to change mode

2. Consistency of variables

3. Schedulability analysis

• Now we start dealing with problems 1 and 2.
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Consistency

• Clearly, we cannot change the control algorithm at an arbitrary
point while the algorithm is executing;
◦ A control algorithm updates its internal state variables while executing;
◦ we must ensure that the state variable does not remain in an inconsistent

state when we change mode;
◦ the same happens if the task is accessing a shared resource with a critical

section protected by a mutex; we cannot interrupt it and change algorithm,
otherwise the mutex remains locked!

• This means that the change of control algorithm must be
synchronized with appropriate checkpoints;
◦ A checkpoint is a point in the code when is safe to interrupt the algorithm

maintaining the consistency of the data;
◦ The “easiest” checkpoints are at the beginning and at the end of the task

instance.
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Implementation type 1

• Suppose we synchronize at the beginning of the task instance.
The code for each task is something like the following;

while(1) {
switch (currmode) {
mode1 : // control algorithm

// for mode 1
break;

mode2 : // control algorithm
// for mode 2
break;

default : break;
}
task_endcycle();

}

Sistemi in tempo reale – p. 8/24



Implementation type 1 - II

• The task cannot change mode while is executing. It can only
change mode at the beginning of one of its istance;

• In this way we guarantee consistency of internal and external
variables (state variables and output variables).

• To introduce other checkpoints, we could complicate the code by
dividing each conrol algorithm in different blocks, and check the
change of mode at the end of each block.
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Implementation type 2

• In this case, each task can be active only in a subset of the
modes.

• Define T1 the tasks active in mode 1, and T2 the task active in
mode 2.
◦ Suppose that the list of modes for which a task is active are stored in

2-dimension array modes[task][mode].
◦ If task i is active in mode currmode, then modes[i][currmode] is true,

otherwise it is false.

• Typical code of the task;
while (1) {
// control algorithm
if (!mode[i][currmode]) task_disable();
task_endcycle();

}

• The primitive task_disable() suspends the periodic
activations; they will be enabled again by an explicit
task_activate()
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Type 1 vs. type 2

• In type 1, all tasks have the same parameters (period and priority)
in every mode;

• In type 2, we have different tasks for different modes: therefore,
from one mode to the other, we can change both the period, the
priority and the computation time of a task.

• Type 2 is more general, whereas type 1 is more simple to
implement.
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Mode manager

• In both cases, we need a “mode manager” task that controls
when the mode must be changed.
◦ The mode manager can be a periodic or aperiodic task;
◦ In the first case (periodic), it periodically observe the state of the system and

of the external variables and decided a mode change;
◦ In the second case (aperiodic), it is attached to an external interrupt

(external condition) or it is explicitely activated by another task.
◦ The mode manager implements the state machine and controls transition

between modes.

• From now on, we consider only type 2 implementations.
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Implementation type 2: manager

• The task manager is structured as follows

while (1) {
if (modeIsChanged()) {

old_mode = curr_mode;
curr_mode = getNewMode();
transition(old_mode, new_mode);
for (i=0; i < NTASK; i++) {

if (mode[i][curr_mode] && !mode[i][old_mode])
task_activate(tid[i]);

}
}
task_endcycle();

}
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Mode Manager

• The manager is a periodic task that periodically checks for
occurrence of mode changes.

• It waits for a change of mode (function modeIsChanged())
• When it happens, performs transition functions and activates all

tasks belonging to the new mode and not active in the old mode.
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Transitions

• Suppose the system must change from mode 1 to mode 2.
• To ensure a smooth transition between two modes, the states of

control algorithms of mode 2 must be properly initialized;
• In other words, the initial conditions of mode 2 depend on the

state conditions of mode 1.
◦ Suppose, as an example, that we want to guarantee continuity of the signal

and of the first derivative of the signal.
◦ The, the internal conditions of the controller for mode 2 must be set so to

ensure these two conditions;

• From a software point of view, for each transition we must call a
set of functions to adjust the initial conditions of all control
algorithms.

Sistemi in tempo reale – p. 15/24



Scheduling analysis

• Another important problem is schedulability:
• Suppose we are changing from mode 1 to mode 2, and that T1 is

the set of tasks active in mode 1 and T2 is the set of tasks that are
active during mode 2.
◦ Set T1\T2 is the set of tasks that leave the mode;
◦ Set T2\T1 is the set of tasks that enter the mode.

• It is important to guarantee that the system continue to be
schedulable;

• Even if T1 and T2, each one considered in isolation, are
schedulable, if the transistion is not done properly, some deadline
could be missed during the transitory.
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Example of deadline miss during transition

• Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
◦ τ1 = (1, 4), τ2 = (2, 9), τ1 = (5, 12), and τ2 = (3, 9), τ1 = (2, 12);
◦ Transition starts at time t = 2.5;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

• Mode Change at time t = 2.5; τ2 suspended at time t = 3
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Rules

• The only way to avoid this problem is to allow the transition only in
certain istants of time;

• We must ensure that all tasks that leave the system have
completed, before activating the new tasks.

• General rule: first de-activate all tasks that leave the mode, then
activate the tasks that enter the mode
◦ In the previous example, this rule was not respected: task τ4 is activated

before task τ3 is de-activated.
◦ Therefore, the earliest instant at which the transition can be done is time 12,

when τ3 has completed.

• The rule above can be re-expressed as: the earliest time at which
the new tasks can be activated is the largest absolute deadline
among all tasks that leave the system

• This means that the transition has a delay.
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Type I and type II

• The same problem is for implementations of type 1 and of type 2
◦ In type 1, each task can be considered as a different task in each mode, with

a different computation time.
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Example revised
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Maximum transition delay

• In the worst-case the delay is equal to the length of the longest
period among all tasks that leave the mode.

• Other possibilities;
◦ Another simple assumption is to make the transition at the hyperperiod;
→ In fact, at the hyperperiod, all task have completed;
→ however, the delay in this case may be larger;

◦ Another possibility is to wait for the first idle time;
→ While the delay may be shorter in this case, it may be difficult to calculate

it a priori.
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Mode Manager

• Two more global variables are needed:
• transition_time is the time after which the tasks that enter

the mode can be activated;
• transitory is a boolean variable that is true when the system is

changing from one mode to the other;
• We group these variables in a structure, and protect the structure

with a mutex;

struct _mode_struct {
int curr_mode;
int old_mode;
int transitory;
TIME transition_time;
pthread_mutex_t m;

} ms;
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Example of code for the mode manager

TASK mode_manager (void *arg) {
//initialization
while(1) {

pthread_mutex_lock(&ms.m);
if (ms.transitory && sys_gettime(&mytime) >= ms.transition_time) {
for (i=0; i<N; i++) if (mode[i][ms.curr_mode]) task_activate(pid[i]);
ms.transitory = 0;
pthread_mutex_unlock(&ms.m);

}
else if (isModeChanged(ms.curr_mode) {
ms.old_mode = ms.curr_mode; ms.curr_mode = getNewMode(ms.curr_mode);
ms.transitory_time=getTransitoryTime(ms.old_mode, ms.curr_mode);
ms.transitory=true;
pthread_mutex_unlock(&ms.m);
transition(ms.old_mode, ms.curr_mode);

}
else pthread_mutex_unlock(&ms.m);

}
task_endcycle();

}
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Considerations

• In the previous example of code, we suppose that the mode
manager task is a periodic task;
◦ The mode manager must execute at high priority;
◦ If it executes at low priority, the transition delay could increase due to the

response time of the mode manager task;
◦ Additional delay is due to the period of the mode manager task; The period

must be quite small, otherwise the delay increases too much.

• The mode manager can also be an aperiodic task;
◦ The mode manager task is activate only when the condition happens, from

an external interrupt, of from one of the other tasks;
◦ In this case, it is necessary to understand which is the maximum frequency

of a mode change (minimum interarrival time);
◦ Again, the priority of the mode manager task should be as high as it is

possible.
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