
Sistemi in tempo reale

Mode change

Giuseppe Lipari

Scuola Superiore Sant’Anna

Pisa -Italy

Sistemi in tempo reale – p. 1/24

http://feanor.sssup.it/~lipari


Modes

• The system can have different working modes
• Each mode defines the same system under different working

conditions;
◦ As an example, consider an airplane;
◦ Typical modes are take-off, cruise, and landing;
◦ During each mode, the system has different control goals; and it must run

different control algorithms.

Sistemi in tempo reale – p. 2/24



Modes and transistions

• Modes can be represented by a state machine. For example,
consider the previous example of airplane control:

Stop Roll Take off

Landing Approach Fly

start

stop

clear to go

quote

destination

clear to land

lined up

Sistemi in tempo reale – p. 3/24



Modes and transistions

• A mode is a node in the diagram (a state)
• A transition is an edge between two nodes:

◦ A transition happens when certain conditions are verified;
◦ For example, a user command, an internal condition, an external condition;

• Upon the occurrence of a transition:
◦ terminate all tasks that are in the current mode and will not be active in the

new mode;
◦ call a transition function;
◦ activate the new set of tasks to be executed.

Sistemi in tempo reale – p. 4/24



Modes and tasks

• To implement modes:
• In general, there will be one global variable that identifies the

current working mode (currmode);
• One manager task that identifies when modes must be changed;
• Modes can be implemented in two basic ways;

1. Type 1 A fixed set of tasks for all the modes; each task can execute different
algorithms depending on the current mode;

2. Type 2 A different set of tasks for each mode.

• Of course, it is also possible to mix the two implementations.

Sistemi in tempo reale – p. 5/24



Mode changes and consistency

• There are several problems the designer must deal with when
designing an multi-mode real-time system;

• The main problem is what happens during the transition between
two modes. In particular, we must deadl with
1. How to change mode

2. Consistency of variables

3. Schedulability analysis

• Now we start dealing with problems 1 and 2.

Sistemi in tempo reale – p. 6/24



Consistency

• Clearly, we cannot change the control algorithm at an arbitrary
point while the algorithm is executing;
◦ A control algorithm updates its internal state variables while executing;
◦ we must ensure that the state variable does not remain in an inconsistent

state when we change mode;
◦ the same happens if the task is accessing a shared resource with a critical

section protected by a mutex; we cannot interrupt it and change algorithm,
otherwise the mutex remains locked!

• This means that the change of control algorithm must be
synchronized with appropriate checkpoints;
◦ A checkpoint is a point in the code when is safe to interrupt the algorithm

maintaining the consistency of the data;
◦ The “easiest” checkpoints are at the beginning and at the end of the task

instance.

Sistemi in tempo reale – p. 7/24



Implementation type 1

• Suppose we synchronize at the beginning of the task instance.
The code for each task is something like the following;

while(1) {
switch (currmode) {
mode1 : // control algorithm

// for mode 1
break;

mode2 : // control algorithm
// for mode 2
break;

default : break;
}
task_endcycle();

}

Sistemi in tempo reale – p. 8/24



Implementation type 1 - II

• The task cannot change mode while is executing. It can only
change mode at the beginning of one of its istance;

• In this way we guarantee consistency of internal and external
variables (state variables and output variables).

• To introduce other checkpoints, we could complicate the code by
dividing each conrol algorithm in different blocks, and check the
change of mode at the end of each block.

Sistemi in tempo reale – p. 9/24



Implementation type 2

• In this case, each task can be active only in a subset of the
modes.

• Define T1 the tasks active in mode 1, and T2 the task active in
mode 2.
◦ Suppose that the list of modes for which a task is active are stored in

2-dimension array modes[task][mode].
◦ If task i is active in mode currmode, then modes[i][currmode] is true,

otherwise it is false.

• Typical code of the task;
while (1) {
// control algorithm
if (!mode[i][currmode]) task_disable();
task_endcycle();

}

• The primitive task_disable() suspends the periodic
activations; they will be enabled again by an explicit
task_activate()

Sistemi in tempo reale – p. 10/24



Type 1 vs. type 2

• In type 1, all tasks have the same parameters (period and priority)
in every mode;

• In type 2, we have different tasks for different modes: therefore,
from one mode to the other, we can change both the period, the
priority and the computation time of a task.

• Type 2 is more general, whereas type 1 is more simple to
implement.

Sistemi in tempo reale – p. 11/24



Mode manager

• In both cases, we need a “mode manager” task that controls
when the mode must be changed.
◦ The mode manager can be a periodic or aperiodic task;
◦ In the first case (periodic), it periodically observe the state of the system and

of the external variables and decided a mode change;
◦ In the second case (aperiodic), it is attached to an external interrupt

(external condition) or it is explicitely activated by another task.
◦ The mode manager implements the state machine and controls transition

between modes.

• From now on, we consider only type 2 implementations.

Sistemi in tempo reale – p. 12/24



Implementation type 2: manager

• The task manager is structured as follows

while (1) {
if (modeIsChanged()) {

old_mode = curr_mode;
curr_mode = getNewMode();
transition(old_mode, new_mode);
for (i=0; i < NTASK; i++) {

if (mode[i][curr_mode] && !mode[i][old_mode])
task_activate(tid[i]);

}
}
task_endcycle();

}

Sistemi in tempo reale – p. 13/24



Mode Manager

• The manager is a periodic task that periodically checks for
occurrence of mode changes.

• It waits for a change of mode (function modeIsChanged())
• When it happens, performs transition functions and activates all

tasks belonging to the new mode and not active in the old mode.

Sistemi in tempo reale – p. 14/24



Transitions

• Suppose the system must change from mode 1 to mode 2.
• To ensure a smooth transition between two modes, the states of

control algorithms of mode 2 must be properly initialized;
• In other words, the initial conditions of mode 2 depend on the

state conditions of mode 1.
◦ Suppose, as an example, that we want to guarantee continuity of the signal

and of the first derivative of the signal.
◦ The, the internal conditions of the controller for mode 2 must be set so to

ensure these two conditions;

• From a software point of view, for each transition we must call a
set of functions to adjust the initial conditions of all control
algorithms.

Sistemi in tempo reale – p. 15/24



Scheduling analysis

• Another important problem is schedulability:
• Suppose we are changing from mode 1 to mode 2, and that T1 is

the set of tasks active in mode 1 and T2 is the set of tasks that are
active during mode 2.
◦ Set T1\T2 is the set of tasks that leave the mode;
◦ Set T2\T1 is the set of tasks that enter the mode.

• It is important to guarantee that the system continue to be
schedulable;

• Even if T1 and T2, each one considered in isolation, are
schedulable, if the transistion is not done properly, some deadline
could be missed during the transitory.

Sistemi in tempo reale – p. 16/24



Example of deadline miss during transition

• Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
◦ τ1 = (1, 4), τ2 = (2, 9), τ1 = (5, 12), and τ2 = (3, 9), τ1 = (2, 12);
◦ Transition starts at time t = 2.5;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

• Mode Change at time t = 2.5; τ2 suspended at time t = 3

Sistemi in tempo reale – p. 17/24



Example of deadline miss during transition

• Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
◦ τ1 = (1, 4), τ2 = (2, 9), τ1 = (5, 12), and τ2 = (3, 9), τ1 = (2, 12);
◦ Transition starts at time t = 2.5;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

• Mode Change at time t = 2.5; τ2 suspended at time t = 3

Sistemi in tempo reale – p. 17/24



Example of deadline miss during transition

• Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
◦ τ1 = (1, 4), τ2 = (2, 9), τ1 = (5, 12), and τ2 = (3, 9), τ1 = (2, 12);
◦ Transition starts at time t = 2.5;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

• Mode Change at time t = 2.5; τ2 suspended at time t = 3

• Task τ4 executes instead of task τ2 from time t = 9

Sistemi in tempo reale – p. 17/24



Example of deadline miss during transition

• Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
◦ τ1 = (1, 4), τ2 = (2, 9), τ1 = (5, 12), and τ2 = (3, 9), τ1 = (2, 12);
◦ Transition starts at time t = 2.5;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

• Mode Change at time t = 2.5; τ2 suspended at time t = 3

• Task τ4 executes instead of task τ2 from time t = 9

Sistemi in tempo reale – p. 17/24



Rules

• The only way to avoid this problem is to allow the transition only in
certain istants of time;

• We must ensure that all tasks that leave the system have
completed, before activating the new tasks.

• General rule: first de-activate all tasks that leave the mode, then
activate the tasks that enter the mode
◦ In the previous example, this rule was not respected: task τ4 is activated

before task τ3 is de-activated.
◦ Therefore, the earliest instant at which the transition can be done is time 12,

when τ3 has completed.

• The rule above can be re-expressed as: the earliest time at which
the new tasks can be activated is the largest absolute deadline
among all tasks that leave the system

• This means that the transition has a delay.

Sistemi in tempo reale – p. 18/24



Type I and type II

• The same problem is for implementations of type 1 and of type 2
◦ In type 1, each task can be considered as a different task in each mode, with

a different computation time.

Sistemi in tempo reale – p. 19/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5

Sistemi in tempo reale – p. 20/24



Maximum transition delay

• In the worst-case the delay is equal to the length of the longest
period among all tasks that leave the mode.

• Other possibilities;
◦ Another simple assumption is to make the transition at the hyperperiod;
→ In fact, at the hyperperiod, all task have completed;
→ however, the delay in this case may be larger;

◦ Another possibility is to wait for the first idle time;
→ While the delay may be shorter in this case, it may be difficult to calculate

it a priori.

Sistemi in tempo reale – p. 21/24



Mode Manager

• Two more global variables are needed:
• transition_time is the time after which the tasks that enter

the mode can be activated;
• transitory is a boolean variable that is true when the system is

changing from one mode to the other;
• We group these variables in a structure, and protect the structure

with a mutex;

struct _mode_struct {
int curr_mode;
int old_mode;
int transitory;
TIME transition_time;
pthread_mutex_t m;

} ms;

Sistemi in tempo reale – p. 22/24



Example of code for the mode manager

TASK mode_manager (void *arg) {
//initialization
while(1) {

pthread_mutex_lock(&ms.m);
if (ms.transitory && sys_gettime(&mytime) >= ms.transition_time) {
for (i=0; i<N; i++) if (mode[i][ms.curr_mode]) task_activate(pid[i]);
ms.transitory = 0;
pthread_mutex_unlock(&ms.m);

}
else if (isModeChanged(ms.curr_mode) {
ms.old_mode = ms.curr_mode; ms.curr_mode = getNewMode(ms.curr_mode);
ms.transitory_time=getTransitoryTime(ms.old_mode, ms.curr_mode);
ms.transitory=true;
pthread_mutex_unlock(&ms.m);
transition(ms.old_mode, ms.curr_mode);

}
else pthread_mutex_unlock(&ms.m);

}
task_endcycle();

}

Sistemi in tempo reale – p. 23/24



Considerations

• In the previous example of code, we suppose that the mode
manager task is a periodic task;
◦ The mode manager must execute at high priority;
◦ If it executes at low priority, the transition delay could increase due to the

response time of the mode manager task;
◦ Additional delay is due to the period of the mode manager task; The period

must be quite small, otherwise the delay increases too much.

• The mode manager can also be an aperiodic task;
◦ The mode manager task is activate only when the condition happens, from

an external interrupt, of from one of the other tasks;
◦ In this case, it is necessary to understand which is the maximum frequency

of a mode change (minimum interarrival time);
◦ Again, the priority of the mode manager task should be as high as it is

possible.

Sistemi in tempo reale – p. 24/24


	Modes
	Modes and transistions
	Modes and transistions
	Modes and tasks
	Mode changes and consistency
	Consistency
	Implementation type 1
	Implementation type 1 - II
	Implementation type 2
	Type 1 vs. type 2
	Mode manager
	Implementation type 2: manager
	Mode Manager
	Transitions
	Scheduling analysis
	Example of deadline miss during transition
	Example of deadline miss during transition
	Example of deadline miss during transition
	Example of deadline miss during transition

	Rules
	Type I and type II
	Example revised
	Example revised
	Example revised
	Example revised
	Example revised
	Example revised
	Example revised
	Example revised
	Example revised

	Maximum transition delay
	Mode Manager
	Example of code for the mode manager
	Considerations

