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Message passing

• Message passing systems are based on the 
basic concept of message

• Two basic operations
– send(destination, message);
– receive(source, &message);

– Two variants
• Both operations can be synchronous or asynchronous
• receive can be symmetric or asymmetric



Producer/Consumer with MP 

• The producer executes send(consumer, data)
• The consumer executes receive(producer, 

data);
• No need for a special communication structure

(already contained in the send/receive
semantic)

Producer Consumer



Synchronous communication

• Synchronous send/receive
producer:  

s_send(consumer, d);

consumer:
s_receive(producer, &d);
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Async send/ Sync receive

• Asynchronous send / synchronous receive
producer:  

a_send(consumer, d);

consumer:
s_receive(producer, &d);

producer consumer

send

receiveproducer consumer
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blocked



Asymmetric receive

• Symmetric receive
– receive(source, &data);

• Often, we do not know who is the sender
– Imagine a web server; 

• the programmer cannot know in advance the address of the 
browser that will request the service

• Many browser can ask for the same service

• Asymmetric receive
– source = receive(&data);



Message passing systems

• In message passing
– Each resource needs one threads manager
– The threads manager is responsible for giving access 

to the resource
• Example: let’s try to implement mutual exclusion

with message passing primitives
– One thread will ensure mutual exclusion
– Every thread that wants to access the resourec must

• send a message to the manager thread
• access the critical section
• send a message to signal the leaving of the critical section



Sync send / sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
s_receive_from(source, &d);

}
}

void * thread(void *)
{

int d;
while (true) {

s_send(manager, d);
<critical section>
s_send(manager, d);

}
}
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With Async send and sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
a_send(source,d);
s_receive_from(source,&d);

}
}

void * thread(void *)
{

int d;
while (true) {

a_send(manager, d);
s_receive_from(manager, &d);
<critical section>
a_send(manager, d);

}
}

manager
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DEADLOCK



Deadlock

• Deadlock is the situation in which a group of 
threads are permanently blocked waiting for
some resource

• Deadlock can happen in many subtle cases
• Here we will study ways of avoiding deadlock

situations



DEADLOCK!!

Example of deadlock

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

Semaphore s1(1);
Semaphore s2(1);
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Graphical situation
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Example with no deadlock
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Other examples of deadlock

• Bad situations can happen even when the 
resource is not “on-off”

• Consider a memory allocator
– Suppose that the maximum memory allocable is 200 

Kb
void * threadA(void *)
{

request(80kb);
...
request(60kb);
...
release(140kb);

}

void * threadB(void *)
{

request(70kb);
...
request(80kb);
...
release(150kb);

}



Consumable and reusable resources

• Reusable resources
– It can be safely used by only one thread at time and is nod

depleted by the use
– Threads must request the resource and later release it, so it can 

be reused by other threads
– Examples are processor, memory, semaphores, etc.

• Consumable resources
– It is created and destroyed dynamically
– Once the resource is acquired by a thread, it is immediately

“destroyed” and cannot be reused
– Examples are messages in a FIFO queue, interrupts, I/O data, 

etc.



Deadlock with consumable resources

void *threadA(void *)
{

s_receive_from(threadB, msg1);
...
s_send(threadB, msg2);
...

}

void *threadB(void *)
{

s_receive_from(threadA, msg1);
...
s_send(threadA, msg2);
...

}
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Conditions for deadlock

• Three conditions
– Mutual exclusion

• Only one process may use the resource at the same time
– Hold and wait

• A process may hold allocated resources when it blocks
– No preemption

• The resource cannot be revoked

• If the three above conditions hold and 
– Circular wait

• A closed chain of threads exists such that each thread holds at 
least one resources needed by the next thread in the chain

• then a deadlock can occur!
• These are necessary and sufficient conditions for a 

deadlock



How to solve the problem of deadlock

• To prevent deadlock from happening we can distinguish
two class of techniques
– Static: we impose strict rules in the way resources may be

requested so that a deadlock cannot occur
– Dynamic: dynamically, we avoid the system to enter in 

dangerous situations

• The basic idea is to avoid that one of the previous
conditions hold

• Three strategies
– Deadlock prevention (static)
– Deadlock avoidance (dynamic)
– Deadlock detection (dynamic)



Conditions

• Mutual exclusion
– This cannot be disallowed. If a resource must be

accessed in mutual exclusion, there is nothing else 
we can do!

• Hold and wait
– We can impose the tasks to take all resources at the 

same time with a single operation
– This is very restrictive! Even if we use the resource

for a small interval of time, we must take it at the 
beginning! 

– Reduces concurrency



Conditions

• No preemption
– This technique can be done only if we can actually

suspend what we are doing on a resource and give it
to another thread

– For the “processor” resource, this is what we do with
a thread switch!

– For other kinds of resources, we should “undo” what
we were doing on the resource

– This may not be possible in many cases!



Conditions

• Circular wait
– This condition can be prevented by defining a linear

ordering of the resources
– For example: we impose that each thread must

access resources in a certain well-defined order
void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}



Why this strategy works?

• Let us define a oriented graph
– A vertex can be

• a thread (round vertex)
• a resource (square vertex)

– An arrow from a thread to a resource denotes that
the thread requires the resource

– An arrow from a resource to a thread denotes that
the resource is granted to the thread

• Deadlock definition
– A deadlock happens if at some point in time there is

a cycle in the graph



Graph

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}
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Theorem

• If all threads access resources in a given order, a 
deadlock cannot occur
– Proof: by contradiction.
– Suppose that a deadlock occurs. Then, there is a cycle. 
– By hypothesis all threads access resources by order
– Therefore, each thread is blocked on a resource that has an

order number grater than the resources it holds.
– Starting from a thread and following the cycle, the order number

of the resource should always increase. However, since there is
a cycle, we go back to the first thread. Then there must be a 
thread T that holds a resource Ra and requests a Resource Rb
with Ra < Rb

– This is a contradiction! 



Deadlock avoidance

• This technique consists in monitoring the 
system to avoid deadlock
– We check the behaviour of the system
– If we see that we are going into a dangerous

situation, we block the thread that is doing the 
request, even if the resource is free



Naive approach

• Definitions
– (R1, R2, ... Rm): total amount of each resource
– (V1, V2, ..., Vm): amount of free resources at time t
– Claim:

– Allocation:
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Naive approach

• Deadlock avoidance rule:
– A new thread T(n+1) is started only if:
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Example

• In case of the semaphores
– R1 = 1, R2 = 1
– Ca1 = 1, Ca2 = 1
– Cb1 = 1, Cb2 = 1

• The previous rule was:

111 ba CCR +≥



The banker’s algorithm

• Tries to identify “safe states”
– Analyse a thread request
– If the situation after the tequest is unsafe (i.e. it leads

to a deadlock) block the thread
– Otherwise, grant the resource!



The banker’s algorithm

// M is the number of different resources
// N is the number of distinct processes
class Bank {

int avail[M]; // How many are left for each resource
int request[N,M]; // How much each process requires
int assigned[N, M]; // how much each process is assigned

public:
// p identifies the process. p is in [0,N-1]
// r identifies the resource. r is in [0, M-1]
bool try(int p, int r);

};



The banker’s algorithm

bool Bank::try(int p, int r)
{

bool flag[N];int i,j;
bool ok = true;
for (i=0; i<N; i++) flag[i]=true;
int my_avail[M];
for (j=0; j<M; j++) 

my_avail[j] = avail[j];
my_avail[r]--;
request[p,r]--;
assigned[p,r]++;
i=0;
...

while (i<N) {
if (flag[i]) {

ok = true;
for (j=0; j<M; j++) 

if (request[i,j]>my_avail[j]) 
ok = false;

}
if (ok) {

for (j=0; j<M; j++) 
my_avail[j] += assigned[i,j];

flag[i] = false;
i = 0;

}
else i++;

}
bool safe = true;
for (i=0; i<N; i++) 

if (flag[i]) safe = false;
if (safe) avail[p,r]--;
return safe;

}



Deadlock detection

• In this strategy, we monitor the system to check
for deadlocks after they happen
– We look for cycles between threads and resources
– How often should we look?

• It is a complex thing to do, so it takes precious processing 
time

• It can be done not so often

– Once we discover deadlock, we must recover
– The idea is to kill some blocked thread



Recovery

1. Abort all threads
– Used in almost all OS. The simplest thing to do.

2. Check point
– All threads define safe check points. When the OS discover a 

deadlock, all involved threads are restarted to a previous
check point
• Problem. The can go in the same deadlock again!

3. Abort one thread at time
– Threads are aborted one after the other until deadlock

disappears

4. Successively preempt resources
– Preempt resources one at time until the deadlock disappears
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