
Scuola Superiore Sant’Anna

Operating Systems and Concurrent
Programming

Giuseppe Lipari
AA 2006 – 2007

Message passing

• Message passing systems are based on the
basic concept of message

• Two basic operations
– send(destination, message);
– receive(source, &message);

– Two variants
• Both operations can be synchronous or asynchronous
• receive can be symmetric or asymmetric

Producer/Consumer with MP

• The producer executes send(consumer, data)
• The consumer executes receive(producer,

data);
• No need for a special communication structure

(already contained in the send/receive
semantic)

Producer Consumer

Synchronous communication

• Synchronous send/receive
producer:

s_send(consumer, d);

consumer:
s_receive(producer, &d);

producer consumer

send

receive

blocked

producer consumer

send

receive

blocked

Async send/ Sync receive

• Asynchronous send / synchronous receive
producer:

a_send(consumer, d);

consumer:
s_receive(producer, &d);

producer consumer

send

receiveproducer consumer

send

receive

blocked

Asymmetric receive

• Symmetric receive
– receive(source, &data);

• Often, we do not know who is the sender
– Imagine a web server;

• the programmer cannot know in advance the address of the
browser that will request the service

• Many browser can ask for the same service

• Asymmetric receive
– source = receive(&data);

Message passing systems

• In message passing
– Each resource needs one threads manager
– The threads manager is responsible for giving access

to the resource
• Example: let’s try to implement mutual exclusion

with message passing primitives
– One thread will ensure mutual exclusion
– Every thread that wants to access the resourec must

• send a message to the manager thread
• access the critical section
• send a message to signal the leaving of the critical section

Sync send / sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
s_receive_from(source, &d);

}
}

void * thread(void *)
{

int d;
while (true) {

s_send(manager, d);
<critical section>
s_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec

send send

send send

With Async send and sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
a_send(source,d);
s_receive_from(source,&d);

}
}

void * thread(void *)
{

int d;
while (true) {

a_send(manager, d);
s_receive_from(manager, &d);
<critical section>
a_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec send send

DEADLOCK

Deadlock

• Deadlock is the situation in which a group of
threads are permanently blocked waiting for
some resource

• Deadlock can happen in many subtle cases
• Here we will study ways of avoiding deadlock

situations

DEADLOCK!!

Example of deadlock

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

Semaphore s1(1);
Semaphore s2(1);

TA

TB

s1.wait()

s2.wait()

s2.wait()

s1.wait()

Graphical situation

TA

TB

get
s1

get
s2

get s2

get s1
Deadlock
inevitable

release s2

release s1

release
s1

release
s2

TA and TB
want s1

TA and TB
want s2

Deadlock
inevitable

Graphical situation

TA

TB

get
s1

get
s2

get s2

get s1

release s2

release s1

release
s1

release
s2

Example with no deadlock

TA

TB

get
s1

get
s2

get s2

get s1

release s2

release s1

release
s1

release
s2

Other examples of deadlock

• Bad situations can happen even when the
resource is not “on-off”

• Consider a memory allocator
– Suppose that the maximum memory allocable is 200

Kb
void * threadA(void *)
{

request(80kb);
...
request(60kb);
...
release(140kb);

}

void * threadB(void *)
{

request(70kb);
...
request(80kb);
...
release(150kb);

}

Consumable and reusable resources

• Reusable resources
– It can be safely used by only one thread at time and is nod

depleted by the use
– Threads must request the resource and later release it, so it can

be reused by other threads
– Examples are processor, memory, semaphores, etc.

• Consumable resources
– It is created and destroyed dynamically
– Once the resource is acquired by a thread, it is immediately

“destroyed” and cannot be reused
– Examples are messages in a FIFO queue, interrupts, I/O data,

etc.

Deadlock with consumable resources

void *threadA(void *)
{

s_receive_from(threadB, msg1);
...
s_send(threadB, msg2);
...

}

void *threadB(void *)
{

s_receive_from(threadA, msg1);
...
s_send(threadA, msg2);
...

}

TA

TB

s_receive_from(threadB,msg1)

s_receive_from(threadA,msg1)

Conditions for deadlock

• Three conditions
– Mutual exclusion

• Only one process may use the resource at the same time
– Hold and wait

• A process may hold allocated resources when it blocks
– No preemption

• The resource cannot be revoked

• If the three above conditions hold and
– Circular wait

• A closed chain of threads exists such that each thread holds at
least one resources needed by the next thread in the chain

• then a deadlock can occur!
• These are necessary and sufficient conditions for a

deadlock

How to solve the problem of deadlock

• To prevent deadlock from happening we can distinguish
two class of techniques
– Static: we impose strict rules in the way resources may be

requested so that a deadlock cannot occur
– Dynamic: dynamically, we avoid the system to enter in

dangerous situations

• The basic idea is to avoid that one of the previous
conditions hold

• Three strategies
– Deadlock prevention (static)
– Deadlock avoidance (dynamic)
– Deadlock detection (dynamic)

Conditions

• Mutual exclusion
– This cannot be disallowed. If a resource must be

accessed in mutual exclusion, there is nothing else
we can do!

• Hold and wait
– We can impose the tasks to take all resources at the

same time with a single operation
– This is very restrictive! Even if we use the resource

for a small interval of time, we must take it at the
beginning!

– Reduces concurrency

Conditions

• No preemption
– This technique can be done only if we can actually

suspend what we are doing on a resource and give it
to another thread

– For the “processor” resource, this is what we do with
a thread switch!

– For other kinds of resources, we should “undo” what
we were doing on the resource

– This may not be possible in many cases!

Conditions

• Circular wait
– This condition can be prevented by defining a linear

ordering of the resources
– For example: we impose that each thread must

access resources in a certain well-defined order
void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

Why this strategy works?

• Let us define a oriented graph
– A vertex can be

• a thread (round vertex)
• a resource (square vertex)

– An arrow from a thread to a resource denotes that
the thread requires the resource

– An arrow from a resource to a thread denotes that
the resource is granted to the thread

• Deadlock definition
– A deadlock happens if at some point in time there is

a cycle in the graph

Graph

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

TA

TB

S1

S2

Theorem

• If all threads access resources in a given order, a
deadlock cannot occur
– Proof: by contradiction.
– Suppose that a deadlock occurs. Then, there is a cycle.
– By hypothesis all threads access resources by order
– Therefore, each thread is blocked on a resource that has an

order number grater than the resources it holds.
– Starting from a thread and following the cycle, the order number

of the resource should always increase. However, since there is
a cycle, we go back to the first thread. Then there must be a
thread T that holds a resource Ra and requests a Resource Rb
with Ra < Rb

– This is a contradiction!

Deadlock avoidance

• This technique consists in monitoring the
system to avoid deadlock
– We check the behaviour of the system
– If we see that we are going into a dangerous

situation, we block the thread that is doing the
request, even if the resource is free

Naive approach

• Definitions
– (R1, R2, ... Rm): total amount of each resource
– (V1, V2, ..., Vm): amount of free resources at time t
– Claim:

– Allocation:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

.........

...

...

2221

1211

CC
CC

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

.........

...

...

2221

1211

AA
AA

Naive approach

• Deadlock avoidance rule:
– A new thread T(n+1) is started only if:

∑
=

+=
n

k
kiii AVR

1
iki RCik ≤∀ :, kiki CAik ≤∀ :,

∑
=

+ +≥
n

k
kiini CCR

1
)1(

Too restrictive!

Example

• In case of the semaphores
– R1 = 1, R2 = 1
– Ca1 = 1, Ca2 = 1
– Cb1 = 1, Cb2 = 1

• The previous rule was:

111 ba CCR +≥

The banker’s algorithm

• Tries to identify “safe states”
– Analyse a thread request
– If the situation after the tequest is unsafe (i.e. it leads

to a deadlock) block the thread
– Otherwise, grant the resource!

The banker’s algorithm

// M is the number of different resources
// N is the number of distinct processes
class Bank {

int avail[M]; // How many are left for each resource
int request[N,M]; // How much each process requires
int assigned[N, M]; // how much each process is assigned

public:
// p identifies the process. p is in [0,N-1]
// r identifies the resource. r is in [0, M-1]
bool try(int p, int r);

};

The banker’s algorithm

bool Bank::try(int p, int r)
{

bool flag[N];int i,j;
bool ok = true;
for (i=0; i<N; i++) flag[i]=true;
int my_avail[M];
for (j=0; j<M; j++)

my_avail[j] = avail[j];
my_avail[r]--;
request[p,r]--;
assigned[p,r]++;
i=0;
...

while (i<N) {
if (flag[i]) {

ok = true;
for (j=0; j<M; j++)

if (request[i,j]>my_avail[j])
ok = false;

}
if (ok) {

for (j=0; j<M; j++)
my_avail[j] += assigned[i,j];

flag[i] = false;
i = 0;

}
else i++;

}
bool safe = true;
for (i=0; i<N; i++)

if (flag[i]) safe = false;
if (safe) avail[p,r]--;
return safe;

}

Deadlock detection

• In this strategy, we monitor the system to check
for deadlocks after they happen
– We look for cycles between threads and resources
– How often should we look?

• It is a complex thing to do, so it takes precious processing
time

• It can be done not so often

– Once we discover deadlock, we must recover
– The idea is to kill some blocked thread

Recovery

1. Abort all threads
– Used in almost all OS. The simplest thing to do.

2. Check point
– All threads define safe check points. When the OS discover a

deadlock, all involved threads are restarted to a previous
check point
• Problem. The can go in the same deadlock again!

3. Abort one thread at time
– Threads are aborted one after the other until deadlock

disappears

4. Successively preempt resources
– Preempt resources one at time until the deadlock disappears

	Operating Systems and Concurrent Programming
	Message passing
	Producer/Consumer with MP
	Synchronous communication
	Async send/ Sync receive
	Asymmetric receive
	Message passing systems
	Sync send / sync receive
	With Async send and sync receive
	DEADLOCK
	Deadlock
	Example of deadlock
	Graphical situation
	Graphical situation
	Example with no deadlock
	Other examples of deadlock
	Consumable and reusable resources
	Deadlock with consumable resources
	Conditions for deadlock
	How to solve the problem of deadlock
	Conditions
	Conditions
	Conditions
	Why this strategy works?
	Graph
	Theorem
	Deadlock avoidance
	Naive approach
	Naive approach
	Example
	The banker’s algorithm
	The banker’s algorithm
	The banker’s algorithm
	Deadlock detection
	Recovery

