real-time operating systems course

4
introduction to POSIX pthread programming

iIntroduction — thread creation, join, end - thread
scheduling - thread cancellation — semaphores - thread
mutexes and condition variables

introduction to POSIX pthread
programming

the POSIX standard

= |s an |IEEE standard that specifies an operating system
interface similar to most UNIX systems

= the standard extends the C language with primitives that
allows the specification of the concurrency
= PQOSIX distinguishes between the terms
process and thread
= g process is an address space with one or more threads
executing in that address space

= athread is a single flow of control within a process

= every process has at least one thread, the “mai n() ” thread; its
termination ends the process

= all the threads share the same address space, and have a separate
stack

the pthread library

the pthread primitives are usually implemented into a
pthread library

all the declarations of the primitives cited in these slides can
be found into sched. h, pt hr ead. h and semaphore. h

use nman to get on-line documentation

when compiling under gcc & GNU/Linux, remember the
—| pt hr ead option!

thread creation, join, end

thread body

= athread is identified by a C function, called body:

void *ny _thread(void *arg)
{

= athread starts with the first instruction of its body

= the threads ends when the body function ends
= it's not the only way a thread can finish

thread creation

= thread can be created using the primitive

Int pthread create(pthread t *ID,
pthread attr t *attr,
void *(*body)(void *),
void * arg

)

= pt hread_t isthe type that contains the thread ID

= pthread_attr _t isthe type that contains the parameters
of the thread

= ar g is the argument passed to the thread body when it
starts

thread attributes

= thread attributes specifies the characteristics of a thread
= stack size and address
= detach state (joinable or detached)
= scheduling parameters (priority, ...)

= attributes must be initialized and destroyed
= int pthread attr _init(pthread attr_t *attr);
= int pthread attr_destroy(pthread attr t *attr);

thread termination

= a thread can terminate itself by calling
void pthread exit(void *retval);

= when the thread body ends after the last “} ,
pt hread_exi t () is called implicitly

= exception: when mai n() terminates, exi t () is called
implicitly

thread IDs

= each thread has a unique ID

= the thread ID of the current thread can be obtained using
pthread t pthread self (void);

= two thread IDs can be compared using

int pthread equal(pthread t threadl,
pthread t thread2);

10

joining a thread

= athread can wait the termination of another thread using

I nt pthread_j oi n(pthread t th,
void **thread return);

= |t gets the return value of the thread or
PTHREAD CANCELED if the thread has been killed

= by default, every task must be joined

= the join frees all the internal resources
(stack, registers, and so on)

11

joining a thread (2)

a thread which does not need to be joined must be declared
as detached.
= 2 ways:

= the thread is created as detached using
pthread attr setdetachstate()

= the thread becomes detached by calling
pt hr ead_det ach()

from its body
= joining a detached thread returns an error

12

example 1

= filename: ex create.c

= the demo explains how to create a thread
= the main () thread creates another thread (called body ())

= the body () thread checks the thread Ids using pthread equal ()
and then ends

= the main () thread joins the body () thread

13

pthread scheduling

scheduling algorithms

= the POSIX standard specifies in sched.h at leasttwo
scheduling strategies, identified by the symbols
SCHED FIFO and SCHED RR
= also, the sporadic server has been added recently to the standard

= other scheduling policies may be supported by each
particular implementation, under the symbol SCHED OTHER

15

scheduling algorithms (2)

= POSIX specifies a Fixed Priority scheduler with at least 32
priorities (0 to 31)

= every priority corresponds to a queue, where all the threads
with the same priority are inserted

= the first ready thread in the highest
non-empty priority queue is selected for scheduling and
becomes the running thread

16

scheduling algorithms (3)

= the running thread is scheduled following its policy
= SCHED FI FOmeans the thread is scheduled until it ends, it blocks
or it is canceled
= SCHED RR means the thread is scheduled until it ends, it blocks, it is
canceled or it consumes its quantum
= the quantum sizeis implementation defined
= SCHED OTHERis implementation defined
= usually it is a UNIX scheduler with aging

17

scheduling algorithms (4)

= real time protocols are supported using mutexes
= Priority Ceiling
= Priority Inheritance
= not all the implementations support them

= PQOSIX leaves unspecified the scheduling order between
threads belonging to different processes

18

POSIX and priorities

= thread priorities can be specified at creation time into the
thread attributes

= int pthread attr setschedpolicy
(pthread attr t *a, 1nt policy);

= policy canbe SCHED RR, SCHED FIFO Or SCHED OTHER

= int pthread attr setschedparam
(pthread attr t *attr,
const struct sched param *param);

= The priority field is param.sched priority

19

real-time and UNIX

= UNIX systems usually schedule all its threads at low
priorities

= when a RT thread is created, it always preempt all the other
applications (i.e. the X server, and all the other demons)

= for that reason,
= real-time computations have to be limited

= only root can use the real-time priorities

20

example 2

= filename:ex rr.c

= the demo explains the behavior of the RT priorities and of
the other policies

= the mai n() thread creates an high priority thread that
activates a low priority thread and two medium priority
threads

= the medium priority threads are scheduled with policies
SCHED RRand SCHED FI FO

= the low priority thread is always scheduled in background

21

pthread cancellation

killing a thread

= athread can be killed by calling
int pthread cancel (pthread t thread);

= when a thread dies its data structures will be released
= by the join primitive if the thread is joinable
= immediately if the thread is detached

23

pthread cancellation

= gpecifies how to react to a Kill request

= there are two different behaviors:
= deferred cancellation

when a kill request arrives to a thread, the thread does not die. The
thread will die only when it will execute a primitive that is a
cancellation point. This is the default behavior of a thread.

= asynchronous cancellation

when a kill request arrives to a thread, the thread dies. The
programmer must ensure that all the application data structures are
coherent.

24

cancellation states and cleanups

= the user can set the cancellation state of a thread using:
I nt pthread_setcancel state(int state,int *oldstate);
| nt pthread _setcanceltype(int type, int *ol dtype);

= the user can protect some regions providing destructors to
be executed in case of cancellation
I nt pthread cl eanup_push(void (*routine)(void *),
void *arg),;
| nt pt hread _cl eanup_pop(int execute);

25

cancellation points

= the cancellation points are primitives that can potentially
block a thread; when called, if there is a kill request
pending the thread will die

= vold pthread testcancel (void);

" sem wait, pthread cond wait, printf and all the I/O primitives
are cancellation points

= pthread mutex lock, is NOT a canc. point
= a complete list can be found into the POSIX Std

26

cleanup handlers

= the user must guarantee that when a thread is killed, the
application data remains coherent.

= the user can protect the application code using cleanup
handlers

= acleanup handler is an user function that cleans up the application
data

= they are called when the thread ends and when it is killed

27

cleanup handlers (2)

vold pthread cleanup push(void (*routine) (void *), void
*arg);

void pthread cleanup pop (int execute);

= they are pushed and popped as in a stack
= if execute!=0 the cleanup handler is called when popped
= the cleanup handlers are called in LIFO order

28

example 3

= filename: ex_cancel |l ation.c
= highlights the behavior of:
= asynchronous cancellation
= deferred cancellation
= explains the cleanup handlers usage

29

semaphores

semaphores

= a semaphore is a counter managed with a set of primitives

= |t is used for
= synchronization
= mutual exclusion
= POSIX Semaphores can be

= unnamed (local to a process)
= named (shared between processed through a file descriptor)

31

unnamed semaphores

= mainly used with multithread applications

= operations permitted:
= |nitialization /destruction
= blocking wait / nonblocking wait
= counter decrement
= post
= counter increment

= counter reading
= simply returns the counter

32

initializing a semaphore

= the sem t type contains all the semaphore data structures

Int seminit(semt *sem int pshared, unsigned int
val ue) ;

= psharedis 0 if semis not shared between processes

Il nt sem destroy(semt *sem
= |t destroys the semsemaphore

33

semaphore waits

int sem wait(sem t *sem);

int sem trywait (sem t *sem);

= |f the counter is greater than 0 the thread does not block
" sem trywait never blocks

" sem wait IS a cancellation point

34

other semaphore primitives

int sem post(sem t *sem);
= it increments the semaphore counter
= |t unblocks a waiting thread

int sem getvalue(sem t *sem,1int *val);

= it simply returns the semaphore counter

35

example 4

= filename: ex_semc

= n this example, semaphores are used to implement mutual
exclusion in the output of a character in the console.

36

pthread mutexes

what is a POSIX mutex?

= think at a mutex as a binary semaphore used for mutual
exclusion
= with the restriction that a mutex can be unlocked only by the thread
that locked it
= mutexes also support some RT protocols
= priority inheritance
= priority ceiling
= they are not implemented under a lot of UNIX OS

38

mutex attributes

= mutex attributes are used to initialize a mutex

int pthread mutexattr init
(pthread mutexattr t *attr);

int pthread mutexattr destroy
(pthread mutexattr t *attr);

= jnitialization and destruction of a mutex attribute

39

mutex attributes (2)

int pthread mutexattr setprotocol
(pthread mutexattr t *attr, int protocol);

= protocol can be PTHREAD PRIO NONE,
PTHREAD PRIO INHERIT, PTHREAD PRIO PROTECT
int pthread mutexattr setprioceilling
(pthread mutexattr t *attr, int pceiling);
= set the priority ceiling of a PTHREAD PRIO PROTECT mutex

40

mutex Initialization

int pthread mutex i1nit (pthread mutex t

*mutex, const pthread mutexattr t *attr);

= |nitializes a mutex with a given mutex attribute

int pthread mutex destroy
(pthread mutex t *mutex);

= destroys a mutex

41

mutex lock and unlock

int
int
int

pthread mutex lock(pthread mutex t *m);
pthread mutex trylock (pthread mutex t *m);
pthread mutex unlock(pthread mutex t *m);

this primitives implement the blocking lock, the non-blocking lock
and the unlock of a mutex

the mutex lock is NOT a cancellation point

42

example 5

= filename: ex nut ex. c

= this is example 4 written using mutexes instead of
semaphores.

43

pthread condition variables

what is a POSIX condition variable?

= condition variables are used to enforce synchronization
between threads
= athread into a mutex critical section can wait on a condition
variable

= when waiting, the mutex is automatically released and locked again
at wake up

= the synchronization point must be checked into a loop!

45

cancellation and mutexes

= mutexes are not cancellation points
= the condition wait is a cancellation point

= when a thread is killed while blocked on a condition
variable, the mutex is locked again before dieing

= a cleanup function must be used to protect the thread from a
cancellation

= if they are not used, the mutex is left locked, and no thread can use
it anymore!

46

condition variable attribute

= attributes are used to initialize a condition variable

int pthread condattr init (pthread condattr t *attr);

int pthread condattr destroy (pthread condattr t
*attr);

= these functions initialize and destroy a condition variable

47

initializing and destroying a condition variable

= {0 be used, a condition variable must be initialized

int pthread cond init (pthread cond t *cond, const
pthread condattr t *attr)

= ...and destroyed when it is no more needed

int pthread cond destroy(pthread cond t *cond)

48

waiting for a condition

int pthread cond wailit (pthread cond t *cond,
pthread mutex t *mutex);

= every condition variable is implicitly linked to a mutex

= given a condition variable, the mutex parameter must always be the
same

= note: the condition wait must always be called into a loop
protected by a cleanup handler!!!

49

signaling a condition

I nt pthread _cond_signal (pthread cond t *cond);
I nt pthread_cond_broadcast (pt hread_cond_t *cond);

= these functions wakes up at least one (signal) or all
(broadcast) the thread blocked on the condition variable

= the thread should lock the associated mutex when calling
these functions

= nothing happens if no thread is blocked on the condition
variable

50

example 6

= filename: ex _cond. c

= this is Example 4 written using simulated semaphores
obtained using mutexes and condition variables

= a simulated semaphore is composed by a counter, a mutex
and a condition variable

= the functions lock the mutex to work with the counter and
use the condition variable to block

51

