
Scuola Superiore Sant’Anna

Operating Systems

Introduction
Giuseppe Lipari

STR A.A. 2007-2008

Introduction

STR A.A. 2007-2008

Fundamentals
• Algorithm:

– It is the logical procedure to solve a certain problem

– Informally specified as a sequence of elementary steps that an
“execution machine” must follow to solve the problem

– not necessarily expressed in a formal programming language!

• Program:
– It is the implementation of an algorithm in a programming

language

– Can be executed several times with different inputs

• Process:
– An instance of a program that, given a set of inputs values,

produces a set of outputs

STR A.A. 2007-2008

Operating System

• An operating system is a program that
– Provides an “abstraction” of the physical machine

through a simple interface

– Each part of the interface is a “service”

• An OS is also a resource manager
– With the term “resource” we denote all physical

entities of a computing machine

– The OS provides access to the physical resources

– The OS provides abstract resources (for example, a
file, a virtual page in memory, etc.)

STR A.A. 2007-2008

Levels of abstraction

Kim Lisa Bill

Main Board
CPU

Keyboard

Video Card

Network Card

Printer

Printer

Hard disk

Operating
System

Interface (System API)

Virtual Memory Scheduler Virtual File Sys.

Device
Driver

Device
Driver

Device
Driver

Device
Driver

Device
Driver

Device
Driver

Web
Browser Shell Videogame Printer

Daemon

User Level

Programmer
Level

System
Level

HW Level

STR A.A. 2007-2008

Abstraction mechanisms

• Why abstraction?
– Programming the HW directly has several

drawbacks
• It is difficult and error-prone

• It is not portable

– Suppose you want to write a program that reads
a text file from disk and outputs it on the screen

• Without a proper interface it is virtually impossible!

STR A.A. 2007-2008

Abstraction Mechanisms

• Application programming interface (API)
– Provides a convenient and uniform way to access

to one service so that
• HW details are hidden to the high level programmer

• Applications do not depend on the specific HW

• The programmer can concentrate on higher level tasks

– Example
• For reading a file, linux and many other unix OS provide

the open(), read() system calls that, given a “file name”
allow to load the data from an external support

STR A.A. 2007-2008

Historical Perspective

• In the beginning was the batch processor
– Huge machines, not very powerful

– Used mainly for scientific computation and
military applications

– Program were executed one at time
• They were called jobs

– Program were simple sequential computations
• Read the input

• Compute

• Produce output

– Non-interactive!

STR A.A. 2007-2008

Batch processor

• Batch = non-interactive
• The program could not be interrupted or suspended

(non-preemptive)
• Scheduling:

– Priority based (e.g. first the military...)
– FIFO
– Shortest job first (SJF)

CPUProgram Punch
Cards

Result

jobs

STR A.A. 2007-2008

Drawbacks
• CPU was inactive for long intervals of time

– While reading the punch cards, the CPU had to
wait

– The punch card reader was very slow

• Solution: spooling
– Use a magnetic disk (a faster I/O device)

– Job were grouped into “job pools”

– While executing one job of a pool, read the next
one into memory

– When a job finishes, load the next one from the
disk

– Spool = symultaneous peripheral operation on-
line

STR A.A. 2007-2008

Interactivity

• The need for interaction
– For reading input from the keyboard during the

computation
– For showing intermediate results
– For saving intermediate result on magnetic

support

• Input/output
– It can be done with a technique called polling

• Wait until the device is ready and get/put the data
• Handshaking

– Again, the CPU was inactive during I/O
operations

STR A.A. 2007-2008

Multi­programming

• The natural evolution was “concurrency”
– IDEA: while a job is reading/writing from/to a I/O

device, schedule another job to execute
(preemption)

CPU Result

jobs

Preemption

STR A.A. 2007-2008

Multi­programming

• Multi-programming is very common in real-
life
– Consider a lawyer that has many clients

• FIFO policy: serving one client at time, from the
beginning until the court sentence

• In italy, a sentence can be given after more than 10
years. Imagine a poor lawyer trying to survive with on
client only for ten years!

• In reality, the lawyer adopts a TIME SHARING policy!

– All of us adopts a time-sharing policy when doing
many jobs at the same time!

STR A.A. 2007-2008

The role of the Operating System

• Structure of a multi-programmed system
– Who decides when a job is suspended?

– Who decided who is to be executed next?
• In the first computers, these tasks were carried out by

the application itself

• Each job could suspend itself and pass the “turn” to the
next job (co-routines)

• However, this is not very general or portable!

– Today, the OS provide the multiprogramming
services

• The scheduler module chooses which job executes
next depending on the status of the system

STR A.A. 2007-2008

Process
Switch

Time sharing systems

• In time sharing systems
– The time line is divided into “slots”, or “rounds”,

each one of maximum lenght equal to a fixed
time quantum

– If the executing job does not block on a I/O
operation befone the end of the quantum, it is
suspended to be executed later

CPU

jobs

CPUCPUCPU

STR A.A. 2007-2008

Time sharing systems

• In time sharing systems
– Each process executes approximately as it were alone on

a slower processor

– The OS (thanks to the scheduler) “virtualizes” the
processor

• One single processor is seen as many (slower) parallel
processors (one for each process)

– We will see that an OS can virtualize many HW resources
• Memory, disk, network, etc

• Time sharing systems are not predicatable
– The amount of execution time received by one process

depends on the number of processes in the system

– If we want predictable behavior, we must use a RTOS

STR A.A. 2007-2008

Multi­user systems

• The first computers were very powerful and
very expensive
– An university could afford only one mainframe,

but many people needed to access the same
computer

– Therefore, the mainframe would give simultanous
access to many users at the same time

– This is an obvious extension of the multi-process
system

• One or more processes for each user

STR A.A. 2007-2008

Multi­user systems

• The terminals had no computing power
– A keyboard + a monitor + a serial line

– Every computation was carried out in the mainframe

– It is like aving one computer with many keyboards and
videos

Mainframe

Dumb
Terminal

Dumb
Terminal

Dumb
Terminal

STR A.A. 2007-2008

Multi­user system

• Another dimension was necessary
– The concept of user and account was born

– The first privacy concerns were raised
• Access rules

• Passwords

• Criptography was applied for the first time in a non-
military environment!

– This makes the system more complex!

STR A.A. 2007-2008

Distributed systems

• Finally, distribution was introduced
– Thanks to the DARPA, the TCP/IP protocol was

developed and internet was born
• The major universities in the USA connected their

mainframes

• Mail, telnet, ftp, etc

• The natural evolution was internet and the world wide
web

– All of this was possible thanks to
• The freedom of circulation of ideas

• The “liberal” environment in universities

• The need for communication and sharing information

STR A.A. 2007-2008

Distributed systems

• More flexibility
– Client/server architectures

• One server provides “services” to remote clients
• Example: web, ftp, databases, etc

– It is possible to “distribute” an application
• Different “parts” execute on different computers and

then communicate each other to exchange information
and synchronise

• Massively parallel programs can be easily implemented

– Migration
• Processes can “move” from one computer to another to

carry out a certain service
• Examples: agents, videogames, applets, etc

STR A.A. 2007-2008

Classification of Operating Systems

• The OS provides an abstraction of a physical
machine
– To allow portability

– To make programmer’s life easier

• The level of abstraction depends on the application
context
– It means that the kind of services an OS provides depend

on which kind of services the application requires
• General purpouses OS should provide a wide range of

services to satisfy as many users as possible

• Specialised OS provide only a group of specialised services

– OS can be classified depending on the application context
• General purpouse (windows, linux, etc), servers, micro-kernel,

embedded OS, real-time OS

STR A.A. 2007-2008

Services

• Virtual processor
– An OS provides “concurrency” between processes

• Many processes are executed at the same time in the
same system

• Each process executes for a fraction of the processor
bandwidth (as it were on a dedicated slower processor)

– Provided by the scheduling sub-system

– Provided by almost all OS, from nano-kernels to
general-purpouse systems

CPU CPU CPU CPU

STR A.A. 2007-2008

Services

• Virtual memory
– Physical memory is limited;

– In old systems, the number of concurrent
processes was limited by the amount of physical
memory

– IDEA: extend the physical memory by using a
“fast” mass storage system (disk)

• Some of the processes stay in memory, some are
temporarily saved on the disk

• When a process must be executed, if it is on the disk it
is first loaded in memory and then executed

• This technique is called “swapping”

STR A.A. 2007-2008

Virtual memory and physical memory

• Virtual memory is very large (virtually infinite!)

• The program functionality does not depend on the size of the memory

• The program performance could be reduced by the swapping
mechanism

Process E

Process D

Process C

Process B

Process A

Process E

Process A

Process C

CPUACEBD

B

D

DiskPhysical memoryVirtual memory

A CEBDA CEBD

Process B A

Process B

Process A

STR A.A. 2007-2008

Virtual Memory

• Advantages
– Virtual infinite memory

– The program is not limited by the size of the
physical memory

• Disadvantages
– If we have too many programs, we spend most of

the time swapping back and forth

– Performance degradation!

– Not suitable for real-time systems
• It is not possible to guarantee a short response time

because it depends on the program location

STR A.A. 2007-2008

Virtual File System

• Basic concepts
– File: sequence of data bytes

• It can be on a mass storage (hard disk, cd-rom, etc.)

• It can be on special virtual devices (i.e. RAM disks)

• It can be on a remote system!

– Directory: list of files
• Usually organised in a tree

• Represents how files are organised on the mass storage
system

• Virtualisation
– In most OS, external serial devices (like the console or the

video terminal) can be seen as files (i.e. stdin, stout ,
stderr)

STR A.A. 2007-2008

Virtual file system

• A good virtual file system provides additional
features:
– Buffering & caching

• For optimising I/O from block devices

– Transactions
• For example the Reiser FS

– Fault tolerance capabilities
• For example, the RAID system

• Virtual file system is not provided by all OS
categories
– Micro and nano kernels do not even provide a file system!

STR A.A. 2007-2008

Privacy and access rules

• When many users are supported
– We must avoid that non-authorised users access

restricted information

– Usually, there are two or more “classes” of users
• Supervisors

• Normal users

– Each resource in the system can be customised
with proper “access rules” that prevent access
from non-authorised users

• For example, the password file should be visible only to
the system supervisor

