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Fundamentals
• Algorithm:

– It is the logical procedure to solve a certain problem

– Informally specified as a sequence of elementary steps that an 
“execution machine” must follow to solve the problem

– not necessarily expressed in a formal programming language!

• Program:
– It is the implementation of an algorithm in a programming 

language

– Can be executed several times with different inputs

• Process:
– An instance of a program that, given a set of inputs values, 

produces a set of outputs
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Operating System

• An operating system is a program that
– Provides an “abstraction” of the physical machine 

through a simple interface

– Each part of the interface is a “service”

• An OS is also a resource manager
– With the term “resource” we denote all physical 

entities of a computing machine

– The OS provides access to the physical resources

– The OS provides abstract resources (for example, a 
file, a virtual page in memory, etc.)
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Levels of abstraction
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Abstraction mechanisms

• Why abstraction?
– Programming the HW directly has several 

drawbacks
• It is difficult and error-prone

• It is not portable

– Suppose you want to write a program that reads 
a text file from disk and outputs it on the screen

• Without a proper interface it is virtually impossible!
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Abstraction Mechanisms

• Application programming interface (API)
– Provides a convenient and uniform way to access 

to one service so that
• HW details are hidden to the high level programmer

• Applications do not depend on the specific HW

• The programmer can concentrate on higher level tasks

– Example
• For reading a file, linux and many other unix OS provide 

the open(), read() system calls that, given a “file name” 
allow to load the data from an external support
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Historical Perspective

• In the beginning was the batch processor
– Huge machines, not very powerful

– Used mainly for scientific computation and 
military applications

– Program were executed one at time
• They were called jobs

– Program were simple sequential computations
• Read the input

• Compute

• Produce output

– Non-interactive!
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Batch processor

• Batch = non-interactive
• The program could not be interrupted or suspended 

(non-preemptive)
• Scheduling:

– Priority based (e.g. first the military...)
– FIFO
– Shortest job first (SJF)

CPUProgram Punch
Cards

Result

jobs
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Drawbacks
• CPU was inactive for long intervals of time

– While reading the punch cards, the CPU had to 
wait

– The punch card reader was very slow

• Solution: spooling
– Use a magnetic disk (a faster I/O device)

– Job were grouped into “job pools”

– While executing one job of a pool, read the next 
one into memory

– When a job finishes, load the next one from the 
disk 

– Spool = symultaneous peripheral operation on-
line
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Interactivity

• The need for interaction
– For reading input from the keyboard during  the 

computation
– For showing intermediate results
– For saving intermediate result on magnetic 

support 

• Input/output
– It can be done with a technique called polling

• Wait until the device is ready and get/put the data
• Handshaking

– Again, the CPU was inactive during I/O 
operations
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Multi­programming

• The natural evolution was “concurrency”
– IDEA: while a job is reading/writing from/to a I/O 

device, schedule another job to execute 
(preemption)

CPU Result

jobs

Preemption



STR A.A. 2007-2008

Multi­programming

• Multi-programming is very common in real-
life
– Consider a lawyer that has many clients

• FIFO policy: serving one client at time, from the 
beginning until the court sentence

• In italy, a sentence can be given after more than 10 
years. Imagine a poor lawyer trying to survive with on 
client only for ten years!

• In reality, the lawyer adopts a TIME SHARING policy!

– All of us adopts a time-sharing policy when doing 
many jobs at the same time! 
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The role of the Operating System

• Structure of a multi-programmed system
– Who decides when a job is suspended?

– Who decided who is to be executed next?
• In the first computers, these tasks were carried out by 

the application itself

• Each job could suspend itself and pass the “turn” to the 
next job (co-routines)

• However, this is not very general or portable!

– Today, the OS provide the multiprogramming 
services

• The scheduler module chooses which job executes 
next depending on the status of the system
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Process
Switch

Time sharing systems

• In time sharing systems
– The time line is divided into “slots”, or “rounds”, 

each one of maximum lenght equal to a fixed 
time quantum

– If the executing job does not block on a I/O 
operation befone the end of the quantum, it is 
suspended to be executed later

CPU

jobs

CPUCPUCPU
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Time sharing systems

• In time sharing systems
– Each process executes approximately as it were alone on 

a slower processor

– The OS (thanks to the scheduler) “virtualizes” the 
processor

• One single processor is seen as many (slower) parallel  
processors (one for each process)

– We will see that an OS can virtualize many HW resources
• Memory, disk, network, etc

• Time sharing systems are not predicatable
– The amount of execution time received by one process 

depends on the number of processes in the system

– If we want predictable behavior, we must use a RTOS
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Multi­user systems

• The first computers were very powerful and 
very expensive
– An university could afford only one mainframe, 

but many people needed to access the same 
computer

– Therefore, the mainframe would give simultanous 
access to many users at the same time

– This is an obvious extension of the multi-process 
system

• One or more processes for each user
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Multi­user systems

• The terminals had no computing power
– A keyboard + a monitor + a serial line

– Every computation was carried out in the mainframe

– It is like aving one computer with many keyboards and 
videos

Mainframe

Dumb
Terminal

Dumb
Terminal

Dumb
Terminal
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Multi­user system

• Another dimension was necessary
– The concept of user and account was born

– The first privacy concerns were raised
• Access rules

• Passwords

• Criptography was applied for the first time in a non-
military environment!

– This makes the system more complex!
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Distributed systems

• Finally, distribution was introduced
– Thanks to the DARPA, the TCP/IP protocol was 

developed and internet was born
• The major universities in the USA connected their 

mainframes

• Mail, telnet, ftp, etc

• The natural evolution was internet and the world wide 
web

– All of this was possible thanks to
• The freedom of circulation of ideas

• The “liberal” environment in universities

• The need for communication and sharing information
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Distributed systems

• More flexibility
– Client/server architectures

• One server provides “services” to remote clients
• Example: web, ftp, databases, etc

– It is possible to “distribute” an application
• Different “parts” execute on different computers and 

then communicate each other to exchange information 
and synchronise

• Massively parallel programs can be easily implemented

– Migration
• Processes can “move” from one computer to another to 

carry out a certain service
• Examples: agents, videogames, applets, etc
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Classification of Operating Systems

• The OS provides an abstraction of a physical 
machine
– To allow portability

– To make programmer’s life easier

• The level of abstraction depends on the application 
context
– It means that the kind of services an OS provides depend 

on which kind of services the application requires
• General purpouses OS should provide a wide range of 

services to satisfy as many users as possible

• Specialised OS provide only a group of specialised services

– OS can be classified depending on the application context
• General purpouse (windows, linux, etc), servers, micro-kernel, 

embedded OS, real-time OS
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Services

• Virtual processor
– An OS provides “concurrency” between processes

• Many processes are executed at the same time in the 
same system

• Each process executes for a fraction of the processor 
bandwidth (as it were on a dedicated slower processor)

– Provided by the scheduling sub-system

– Provided by almost all OS, from nano-kernels to 
general-purpouse systems

CPU CPU CPU CPU
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Services

• Virtual memory
– Physical memory is limited;

– In old systems, the number of concurrent 
processes was limited by the amount of physical 
memory

– IDEA: extend the physical memory by using a 
“fast” mass storage system (disk)

• Some of the processes stay in memory, some are 
temporarily saved on the disk 

• When a process must be executed, if it is on the disk it 
is first loaded in memory and then executed

• This technique is called “swapping”
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Virtual memory and physical memory

• Virtual memory is very large (virtually infinite!)

• The program functionality does not depend on the size of the memory

• The program performance could be reduced by the swapping 
mechanism
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Virtual Memory

• Advantages
– Virtual infinite memory

– The program is not limited by the size of the 
physical memory

• Disadvantages
– If we have too many programs, we spend most of 

the time swapping back and forth

– Performance degradation!

– Not suitable for real-time systems
• It is not possible to guarantee a short response time 

because it depends on the program location
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Virtual File System

• Basic concepts
– File: sequence of data bytes

• It can be on a mass storage (hard disk, cd-rom, etc.)

• It can be on special virtual devices (i.e. RAM disks)

• It can be on a remote system!

– Directory: list of files
• Usually organised in a tree

• Represents how files are organised on the mass storage 
system

• Virtualisation
– In most OS, external serial devices (like the console or the 

video terminal) can be seen as files (i.e. stdin, stout , 
stderr)
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Virtual file system

• A good virtual file system provides additional 
features:
– Buffering & caching 

• For optimising I/O from block devices

– Transactions
• For example the Reiser FS 

– Fault tolerance capabilities
• For example, the RAID system

• Virtual file system is not provided by all OS 
categories
– Micro and nano kernels do not even provide a file system!
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Privacy and access rules

• When many users are supported
– We must avoid that non-authorised users access 

restricted information

– Usually, there are two or more “classes” of users
• Supervisors

• Normal users

– Each resource in the system can be customised 
with proper “access rules” that prevent access 
from non-authorised users

• For example, the password file should be visible only to 
the system supervisor


