Scuola Superiore Sant’Anna

?etis

Real-Time System Laboratory

Operating Systems

Introduction
Giuseppe Lipari

Introduction

STR A.A. 2007-2008

Fundamentals

« Algorithm:
— Itis the logical procedure to solve a certain problem

— Informally specified as a sequence of elementary steps that an
“execution machine” must follow to solve the problem

— not necessarily expressed in a formal programming language!
« Program:
— ltis the implementation of an algorithm in a programming
language
— Can be executed several times with different inputs
« Process:

— An instance of a program that, given a set of inputs values,
produces a set of outputs

STR A.A. 2007-2008

Operating System

« An operating system is a program that

— Provides an “abstraction” of the physical machine
through a simple interface

— Each part of the interface is a “service”

« An OS is also a resource manager

— With the term “resource” we denote all physical
entities of a computing machine

— The OS provides access to the physical resources

— The OS provides abstract resources (for example, a
file, a virtual page in memory, etc.)

STR A.A. 2007-2008

Levels of abstraction

Programmer Web : Printer
Level B Shell Videogame 5 T
4 Interface (System API) N
System
Level r Operating Virtual Memory | Scheduler | Virtual File Sys
System
\ .-_-_-_.
HW Level C N
Main Board Keyboard | Network Card Printer
CPU Video Card Printer Hard disk
S)

STR A.A. 2007-2008

Abstraction mechanisms

« Why abstraction?

— Programming the HW directly has several
drawbacks
« It is difficult and error-prone
« It is not portable
— Suppose you want to write a program that reads
a text file from disk and outputs it on the screen
« Without a proper interface it is virtually impossible!

STR A.A. 2007-2008

Abstraction Mechanisms

« Application programming interface (API)
— Provides a convenient and uniform way to access
to one service so that
« HW details are hidden to the high level programmer

« Applications do not depend on the specific HW
« The programmer can concentrate on higher level tasks

— Example

« For reading a file, linux and many other unix OS provide
the open(), read() system calls that, given a “file name”
allow to load the data from an external support

STR A.A. 2007-2008

Historical Perspective

 |In the beginning was the batch processor
— Huge machines, not very powerful
— Used mainly for scientific computation and
military applications
— Program were executed one at time
« They were called jobs

— Program were simple sequential computations
« Read the input
« Compute
« Produce output

— Non-interactive!

STR A.A. 2007-2008

Batch processor

jobs
o) D
Punch
JProgram — Clélrds y| . @

Result

« Batch = non-interactive

« The program could not be interrupted or suspended
(non-preemptive)
« Scheduling:
— Priority based (e.g. first the military...)
— FIFO
— Shortest job first (SJF)

STR A.A. 2007-2008

Drawbacks

«* CPU was inactive for long intervals of time
— While reading the punch cards, the CPU had to

wait

— The punch card reader was very slow

« Solution: spooling

— Use a magnetic disk (a faster |/O device)

— Job were grouped into “job pools”

— While executing one job of a pool, read the next
one into memory

— When a job finishes, load the next one from the
disk

— Spool = symultaneous peripheral operation on-
line

STR A.A. 2007-2008

Interactivity

« The need for interaction

— For reading input from the keyboard during the
computation

— For showing intermediate results

— For saving intermediate result on magnetic
support

« |Input/output

— It can be done with a technique called polling
« Wait until the device is ready and get/put the data
« Handshaking

— Again, the CPU was inactive during 1/O
operations

STR A.A. 2007-2008

Multi-programming

« The natural evolution was “concurrency”

— IDEA: while a job is reading/writing from/to a 1/O
device, schedule another job to execute

(preemption)
@ Result

Preemption

jobs

STR A.A. 2007-2008

Multi-programming

« Multi-programming is very common in real-
life
— Consider a lawyer that has many clients

« FIFO policy: serving one client at time, from the
beginning until the court sentence

« Initaly, a sentence can be given after more than 10
years. Imagine a poor lawyer trying to survive with on
client only for ten years!

« In reality, the lawyer adopts a TIME SHARING policy!

— All of us adopts a time-sharing policy when doing
many jobs at the same time!

STR A.A. 2007-2008

The role of the Operating System

« Structure of a multi-programmed system
— Who decides when a job is suspended?

— Who decided who is to be executed next?

« In the first computers, these tasks were carried out by
the application itself

« Each job could suspend itself and pass the “turn” to the
next job (co-routines)

« However, this is not very general or portable!

— Today, the OS provide the multiprogramming
services

« The scheduler module chooses which job executes
next depending on the status of the system

STR A.A. 2007-2008

Time sharing systems

 In time sharing systems

— The time line is divided into “slots”, or “rounds”,
each one of maximum lenght equal to a fixed
time quantum

— If the executing job does not block on a I/O
operation befone the end of the quantum, it is
suspended to be executed later

jobs

Process
Switch

STR A.A. 2007-2008

Time sharing systems

« In time sharing systems

— Each process executes approximately as it were alone on
a slower processor

— The OS (thanks to the scheduler) “virtualizes” the
processor

« One single processor is seen as many (slower) parallel
processors (one for each process)

— We will see that an OS can virtualize many HW resources
« Memory, disk, network, etc
« Time sharing systems are not predicatable

— The amount of execution time received by one process
depends on the number of processes in the system

— If we want predictable behavior, we must use a RTOS

STR A.A. 2007-2008

Multi-user systems

« The first computers were very powerful and
very expensive

— An university could afford only one mainframe,
but many people needed to access the same
computer

— Therefore, the mainframe would give simultanous
access to many users at the same time

— This is an obvious extension of the multi-process
system
« One or more processes for each user

STR A.A. 2007-2008

Multi-user systems

Mainframe
Dumb Dumb Dumb
Terminal Terminal Terminal

« The terminals had no computing power
— A keyboard + a monitor + a serial line
— Every computation was carried out in the mainframe

— It is like aving one computer with many keyboards and
videos

STR A.A. 2007-2008

Multi-user system

« Another dimension was necessary
— The concept of user and account was born

— The first privacy concerns were raised
« Access rules
« Passwords

« Criptography was applied for the first time in a non-
military environment!

— This makes the system more complex!

STR A.A. 2007-2008

Distributed systems

« Finally, distribution was introduced

— Thanks to the DARPA, the TCP/IP protocol was
developed and internet was born

« The major universities in the USA connected their
mainframes

« Mail, telnet, ftp, etc

« The natural evolution was internet and the world wide
web

— All of this was possible thanks to
« The freedom of circulation of ideas
« The “liberal” environment in universities
« The need for communication and sharing information

STR A.A. 2007-2008

Distributed systems

« More flexibility

— Client/server architectures
« One server provides “services” to remote clients
« Example: web, ftp, databases, etc

— It is possible to “distribute” an application

« Different “parts” execute on different computers and
then communicate each other to exchange information
and synchronise

« Massively parallel programs can be easily implemented
— Migration

« Processes can “move” from one computer to another to
carry out a certain service

« Examples: agents, videogames, applets, etc

STR A.A. 2007-2008

Classification of Operating Systems

« The OS provides an abstraction of a physical
machine
— To allow portability
— To make programmer’s life easier

« The level of abstraction depends on the application
context

— It means that the kind of services an OS provides depend
on which kind of services the application requires

« General purpouses OS should provide a wide range of
services to satisfy as many users as possible

« Specialised OS provide only a group of specialised services
— OS can be classified depending on the application context

« General purpouse (windows, linux, etc), servers, micro-kernel,
embedded OS, real-time OS

STR A.A. 2007-2008

Services

« Virtual processor

— An OS provides “concurrency” between processes

« Many processes are executed at the same time in the
same system

« Each process executes for a fraction of the processor
bandwidth (as it were on a dedicated slower processor)

— Provided by the scheduling sub-system

— Provided by almost all OS, from nano-kernels to
general-purpouse systems

OO O OO O

A.A. 2007-2008

Services

 Virtual memory
— Physical memory is limited,;
— In old systems, the number of concurrent

processes was limited by the amount of physical
memory

— IDEA: extend the physical memory by using a
“fast” mass storage system (disk)

« Some of the processes stay in memory, some are
temporarily saved on the disk

« When a process must be executed, if it is on the disk it
is first loaded in memory and then executed

« This technique is called “swapping”

STR A.A. 2007-2008

Virtual memory and physical memory

A|D|B|E]|C " CPU
Process A

Process B

Process C Process E —

Process D Process B 3//

Process E Process C - b
Virtual memory Physical memory Disk

« Virtual memory is very large (virtually infinite!)
« The program functionality does not depend on the size of the memory

« The program performance could be reduced by the swapping

mechanism
STR A.A. 2007-2008

Virtual Memory

« Advantages
— Virtual infinite memory
— The program is not limited by the size of the
physical memory
- Disadvantages

— If we have too many programs, we spend most of
the time swapping back and forth

— Performance degradation!

— Not suitable for real-time systems

« Itis not possible to guarantee a short response time
because it depends on the program location

STR A.A. 2007-2008

Virtual File System

« Basic concepts

— File: sequence of data bytes
« |t can be on a mass storage (hard disk, cd-rom, etc.)
« It can be on special virtual devices (i.e. RAM disks)
« It can be on a remote system!
— Directory: list of files
« Usually organised in a tree
« Represents how files are organised on the mass storage
system

« Virtualisation

— In most OS, external serial devices (like the console or the
video terminal) can be seen as files (i.e. stdin, stout ,
stderr)

STR A.A. 2007-2008

Virtual file system

« A good virtual file system provides additional
features:
— Buffering & caching
« For optimising I/O from block devices

— Transactions
« For example the Reiser FS
— Fault tolerance capabilities
« For example, the RAID system

 Virtual file system is not provided by all OS
categories
— Micro and nano kernels do not even provide a file system!

STR A.A. 2007-2008

Privacy and access rules

« When many users are supported

— We must avoid that non-authorised users access
restricted information

— Usually, there are two or more “classes” of users
o Supervisors
« Normal users

— Each resource in the system can be customised
with proper “access rules” that prevent access
from non-authorised users

« For example, the password file should be visible only to
the system supervisor

STR A.A. 2007-2008

