
Scuola Superiore Sant’Anna

Operating Systems
Overview of HW architectures

Giuseppe Lipari

ERI Gennaio 2008 2

Basic blocks

CPU

BUS

Main
Memory

Other I/O
devices

Disk keyboard Video

ERI Gennaio 2008 3

The processor

• Set of registers
– IP: instruction pointer

– SP: stack pointer

– A0-A3: general registers

– CR: control register

• Execution units
– Arithmetic unit

– Fetching unit

– Branch prediction unit

– ...

• Other components
– Pipeline

– Cache

CPU

IP

SP

R0

R1

R2

R3

Execution
Units

CR

ERI Gennaio 2008 4

Processor registers

• User visible registers
– Used as temporary buffers for processor operations

– Can be in any number
• RISC architectures: array of registers

• CISC architectures: set of registers dedicated to specific
operations

• Control and Status registers
– IP Instruction pointer

– SP Stack Pointer

– CR Control Register (or PSW Program Status Word)

ERI Gennaio 2008 5

Modes of operation

• Many processors have at least two modes of
operation
– Supervisor mode

• All instructions are allowed

• Kernel routines execute in supervisor mode because the OS
must access all features of the system

– User mode
• Not all instructions are allowed

• User programs execute in user mode

• Some instruction (for example, disabling interrupts) cannot be
invoked directly by user programs

• Switching
– It is possible to switch from user mode to supervisor mode

with special instructions

ERI Gennaio 2008 6

Main Memory and bus

• The RAM
– Sequence of data locations

– Contains both instructions (TEXT) and data
variables

• The bus
– A set of “wires”

• Address wires

• Data wires

– The number of data wires is the amount of bits
that can be read with one memory access

• Current PC buses: 32 bits, 64 bits

ERI Gennaio 2008 7

Instruction execution

• We distinguish at least two phases
– Fetching: the instruction is read from memory
– Execute: the instruction is executed

Data processing instr. – the result is stored in registers
Load instr. – the data is loaded from main memory
Store – the data is stored in main memory
Control – the flow of execution may change (change IP)

– Some instruction may be the combination of different
types

Start HaltFetch next
instruction

Execute
instruction

ERI Gennaio 2008 8

Stack
Frame

Stack Frames

• The stack is used to
– Save local variables

– Implement function calling

• Every time a function is called
– The parameters are saved on the

stack

– Call <address>: The current IP is
saved on the stack

– The routine saves the registers that
will be modified on the stack

– The local variables are defined on the
stack

– When the function is over the stack is
cleaned and the RET instruction is
called which restores IP

Stack

Parameters

IP
R0
R1
R2
x
y

ERI Gennaio 2008 9

External devices

• I/O devices
– Set of data registers
– Set of control registers
– mapped on certain

memory locations

D0 CR0

CR1

CR2

D1

D2

I/O device interface

BUS

CPU

IP

SP

R0

R1

R2

R3CR

Memory

A3B0

A3B2

A3B4

A3B6

A3B8

A3BA

A3BC

…

FF00

FF02

FF04

FF06

FF08

FF0A

ERI Gennaio 2008 10

I/O operations

• Structure of an I/O operation
– Phase 1: prepare the device for the operation

• In case of output, data is transferred to the data buffer
registers

• The operation parameters are set with the control
registers

• The operation is triggered

– Phase 2: wait for the operation to be performed
• Devices are much slower than the processor

• It may take a while to get/put the data on the device

– Phase 3: complete the operation
• Error checking

• Clean up the control registers

ERI Gennaio 2008 11

Example of input operation

• Phase 1: nothing

• Phase 2: wait until bit 0 of CR0 becomes 1

• Phase 3: read data from D0 and reset bit 0 of CR0

BUS

CPU

IP

SP

R0

R1

R2

R3CR

D0 CR0

CR1

CR2

D1

D2

I/O device interface

FF00

FF02

FF04

FF06

FF08

FF0A

CR0D0 CR0D0 R0

ERI Gennaio 2008 12

Example of output operation

• Phase 1: write data to D1 and set bit 0 of CR1

• Phase 2: wait for bit 1 of CR1 to become 1

• Phase 3: clean CR1

BUS

CPU

IP

SP

R0

R1

R2

R3CR

D0 CR0

CR1

CR2

D1

D2

I/O device interface

FF00

FF02

FF04

FF06

FF08

FF0A

CR1D1D1

R0
CR1

R0
CR1

ERI Gennaio 2008 13

Temporal diagram

• Polling
– This technique is called “polling” because the

processor “polls” the device until the operation is
completed

– In general, it can be a waste of time

– The processor could execute something useful
while the device is working

• but, how can the processor know when the device has
completed the I/O operation?

ERI Gennaio 2008 14

Interrupts

• Every processor supports an interrupt mechanism
– The processor has a special pin, called “interrupt request

(IRQ)”

– Upon reception of a signal on the IRQ pin,
• If interrupts are enabled, the processor suspends execution

and invokes an “interrupt handler” routine

• If interrupts are disabled, the request is pending and will be
served as soon as the interrupts are enabled

Start HaltFetch next
instruction

Execute
instruction

Interrupts?
Serve

Interrupt

ERI Gennaio 2008 15

Interrupt handling

• Every interrupt is associated one
“handler”

• When the interrupt arrives
– The processor suspend what is doing

– Pushes CR on the stack

– Calls the handler (pushes the IP on the
stack)

– The handler saves the registers that will
be modified on the stack

– Executes the interrupt handling code

– Restores the registers

– Executes IRET (restores IP and CR)
Stack

CR

IP

R0

R1

ERI Gennaio 2008 16

Input with interrupts

• Phase 1: do nothing

• Phase 2: execute other code

• Phase 3: upon reception of the interrupt, read data
from D0, clean CR0 and return to the interrupted
code

BUS

CPU

IP

SP

R0

R1

R2

R3CR

D0 CR0

CR1

CR2

D1

D2

I/O device interface

FF00

FF02

FF04

FF06

FF08

FF0A

CR0D0 CR0D0 R0

IRQ

ERI Gennaio 2008 17

Interrupts

• Let’s compare polling and interrupt

Normal
code

Interrupt
handler Phase 1

Phase 2

Phase 3

Polling
code

ERI Gennaio 2008 18

The meaning of phase 3

• Phase 3 is used to signal the device that the
interrupt has been served
– It is an handshake protocol

• The device signals the interrupt

• The processor serves the interrupt and exchanges the
data

• The processor signals the device that it has finished
serving the interrupt

• Now a new interrupt from the same device can be
raised

ERI Gennaio 2008 19

Interrupt disabling

• Two special instructions
– STI: enables interrupts

– CLI: disables interrupts

– These instructions are privileged
• Can be executed only in supervisor mode

– When an interrupt arrives the processor goes
automatically in supervisor mode

Normal
code

Interrupt
handler

CLI STI

Pending
Interrupt

ERI Gennaio 2008 20

Many sources of interrupts

• Usually, processor has one single IRQ pin
– However, there are several different I/O devices

– Intel processors use an external Interrupt
Controller

• 8 IRQ input lines, one output line

BUS

CPU
IRQ

IRQ0
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

I/O
Device

I/O
DeviceIn

te
rr

u
p

t
C

o
n

tr
o

l le
r

ERI Gennaio 2008 21

Nesting interrupts

• Interrupt disabling
– With CLI, all interrupts are disabled

• When an interrupt is raised,
– before calling the interrupt handler, interrupts are

automatically disabled

– However, it is possible to explicitely call STI to re-
enable interrupts even during an interrupt handler

– In this way, we can “nest interrupts”
• One interrupt handler can itself be interrupted by

another interrupt

ERI Gennaio 2008 22

Interrupt controller

• Interrupts have priority
– IRQ0 has the highest priority, IRQ7 the lowest

• When an interrupt from a I/O device is raised
– If there are other interrupts pending

• If it is the highest priority interrupt, it is forwarded to the
processor (raising the IRQ line)

• Otherwise, it remains pending, and it will be served
when the processor finishes serving the current
interrupt

ERI Gennaio 2008 23

Nesting interrupts

• Why nesting interrupts?
– If interrupts are not nested, important services

many be delayed too much
• For example, IRQ0 is the timer interrupt
• The timer interrupt is used to set the time reference of

the system
• If the timer interrupt is delayed too much, it can get lost

(i.e. another interrupt from the timer could arrive before
the previous one is served)

• Losing a timer interrupt can cause losing the correct
time reference in the OS

• Therefore, the timer interrupt has the highest priority
and can interrupt everything, even another “slower”
interrupt

ERI Gennaio 2008 24

Nested interrupts

Normal
code

Slow Interrupt
handler

High priority
Interrupt handler

ERI Gennaio 2008 25

Atomicity

• An hardware instruction is atomic if it cannot
be “interleaved” with other instructions
– Atomic operations are always sequentialized

– Atomic operations cannot be interrupted
• They are safe operations

• For example, transferring one word from memory to
register or viceversa

– Non atomic operations can be interrupted
• They are not “safe” operations

• Non elementary operations are not atomic

ERI Gennaio 2008 26

Non atomic operations

• Consider a “simple” operation like

x = x+1;

 In assembler
 LD R0, x

INC R0
ST x,RO

 A simple operation like incrementing a memory
variable may consist of three machine instructions

 If the same operation is done inside an interrupt
handler, an inconsistency can arise!

ERI Gennaio 2008 27

Interrupt on non­atomic operations

int x=0;

...
x = x + 1;
...

Normal code
void handler(void)
{
 ...
 x = x + 1;

}

Handler code

...
LD R0, x
INC R0
ST x, RO
...

Save registers
...
LD R0, x
INC R0
ST x, RO
...
Restore registers

?R0

0x

CPU

memory

0

Saved registers

0

01

1

01

1

ERI Gennaio 2008 28

Solving the problem in single processor

• One possibility is to disable interrupts in
“critical sections”

...
CLI
LD R0, x
INC R0
ST x, RO
STI
...

Save registers
...
LD R0, x
INC R0
ST x, RO
...
Restore registers

ERI Gennaio 2008 29

Multi­processor systems

• Symmetric multi-processors (SMP)
– Identical processors
– One shared memory

CPU 0 CPU 1 CPU 2 CPU 3

Memory

ERI Gennaio 2008 30

Multi­processor systems

• Two typical organisations
– Master / Slave

• The OS runs on one processor only (master), CPU0

• When a process requires a OS service, sends a
message to CPU0

– Symmetric
• One copy of the OS runs indipendentely on each

processor

• They must synchronise on common data structures

• We will analyse this configuration later in the course

ERI Gennaio 2008 31

Low level synchronisation in SMP

• The atomicity problem cannot be solved by
disabling the interrupts!
– If we disable the interrupts, we protect the code

from interrupts.
– It is not easy to protect from other processors

...
LD R0, x
INC R0
ST x, RO
...

...
LD R0, x
INC R0
ST x, RO
...

...
LD R0, x (CPU 0)
LD R0, x (CPU 1)
INC R0 (CPU 0)
INC R0 (CPU 1)
ST x, R0 (CPU 0)
ST x, R0 (CPU 1)
...

CPU 0

CPU 1

ERI Gennaio 2008 32

Low level synchronisation in SMP

• Most processors support some special
instruction
– XCH Exchange register with memory location

– TST If memory location = 0, set location to 1
and return true (1), else return false (0)

ERI Gennaio 2008 33

Pseudo­code for TST and XCH

XCH and TST
are atomic!

void xch(register R, memory x)
{

int tmp;
tmp = R; R = x; x=tmp;

}

int tst(int x)
{

if (x == 1) return 0;
else {

x=1;
return 1;

}
}

ERI Gennaio 2008 34

How they work

• XCH and TST
– the processor that executes the instruction locks the

bus and performs two operations (read and write)
without interference from other processors

– needs a bus arbiter

ERI Gennaio 2008 35

Locking in multi­processors

• We define one variable s
– If s == 0, then we can perform the critical operation

– If s == 1, the must wait before performing the critical
operation

• Using XCH or TST we can implement two functions:
– lock() and unlock()

ERI Gennaio 2008 36

Locking with XCH

• Since there is an active waiting, this technique is
called spinlock

void lock(int s)
{

int a = 1;
while (a==1) XCH (s,a);

}

void unlock(int s)
{

s = 0;
}

; ------------------------------
; LOCK(S)
; ------------------------------

LD R0,1
LABEL : XCH R0, s

CMP R0, 1
JE LABEL
...

; ------------------------------
; UNLOCK(S)
; ------------------------------

LD R0, 0
LD s, R0
...

ERI Gennaio 2008 37

Locking with TST

void lock(int x)
{

while (TST (s) == 0);
}

void unlock(int s)
{

s = 0;
}

; --------------------------------
; LOCK
;---------------------------------
LABEL: TST s

JZ LABEL
....

; ------------------------------
; UNLOCK(S)
; ------------------------------

LD R0, 0
LD s, R0
...

• Again an active waiting, this is a different
implementation of the spinlock

ERI Gennaio 2008 38

Locking in multi­processors
L0: TST s

JZ L0
LD R0, x
INC R0
ST x, R0
LD R1, 0
ST s, R1

...

TST s (CPU 0)
TST s (CPU 1)
JZ L0 (CPU 0)
JZ L0 (CPU 1)
LD R0, x (CPU 0)
TST s (CPU 1)
INC R0 (CPU 0)
JZ L0 (CPU 1)
ST x, R0 (CPU 0)
TST s (CPU 1)
LD R1, 0 (CPU 0)
JZ L0 (CPU 1)
ST s, R1 (CPU 0)
TST s (CPU 1)
... (CPU 0)
JZ L0 (CPU 1)
... (CPU 0)
LD R0, x (CPU 1)

CPU 0

CPU 1

L0: TST s
JZ L0
LD R0, x
INC R0
ST x, RO
LD R1, 0
ST s, R1

...

Lock(s)

Unlock(s)

Unlock(s)

Lock(s)

x=x+1

x=x+1

ERI Gennaio 2008 39

Locking

• The lock / unlock operations are “safe”
– No matter how you interleave the operations,

there is no possibility that the “critical parts”
interleave

– However, spinlock is an active wait and a
possible wast of time

• The problem of locking is very general and
will be analysed and solved in greater details
later

ERI Gennaio 2008 40

Spinlock

• Problem 1
– If CPU1 waits for CPU0 with a spinlock, it cannot

execute other activities

– this is a waste of processor time

• Problem 2
– When CPU1 waits for CPU0 with a spinlock, it

accesses memory continuosly

– It occupies the system shared bus

– It slows down the other processors! (It reduces
considerably the bus bandwidth)

ERI Gennaio 2008 41

More sophisticated techniques

• Using cache coherency
– if every processor has a local cache, a cache

coherency algorithm ensures that the cache content is
synchronized with the global memory

CPU0CPU0 CPU1

s=0

s=0

s=0s=1

1. Writes back
to global
memory

2. Invalidates
cache line

s=0

s=1

