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The processor

• Set of registers
– IP: instruction pointer

– SP: stack pointer

– A0-A3: general registers

– CR: control register

• Execution units
– Arithmetic unit

– Fetching unit

– Branch prediction unit

– ...

• Other components
– Pipeline

– Cache
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Processor registers

• User visible registers
– Used as temporary buffers for processor operations

– Can be in any number
• RISC architectures: array of registers

• CISC architectures: set of registers dedicated to specific 
operations

• Control and Status registers
– IP Instruction pointer

– SP Stack Pointer

– CR Control Register (or PSW Program Status Word)
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Modes of operation

• Many processors have at least two modes of 
operation
– Supervisor mode

• All instructions are allowed 

• Kernel routines execute in supervisor mode because the OS 
must access all features of the system

– User mode
• Not all instructions are allowed

• User programs execute in user mode

• Some instruction (for example, disabling interrupts) cannot be 
invoked directly by user programs

• Switching
– It is possible to switch from user mode to supervisor mode  

with special instructions
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Main Memory and bus

• The RAM
– Sequence of data locations

– Contains both instructions (TEXT) and data 
variables

• The bus
– A set of “wires”

• Address wires

• Data wires

– The number of data wires is the amount of bits 
that can be read with one memory access

• Current PC buses: 32 bits, 64 bits
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Instruction execution

• We distinguish at least two phases
– Fetching: the instruction is read from memory
– Execute: the instruction is executed

Data processing instr. – the result is stored in registers
Load instr. – the data is loaded from main memory
Store – the data is stored in main memory
Control – the flow of execution may change (change IP)

– Some instruction may be the combination of different 
types

Start HaltFetch next
instruction

Execute
instruction
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Stack
Frame

Stack Frames

• The stack is used to
– Save local variables

– Implement function calling

• Every time a function is called
– The parameters are saved on the 

stack

– Call <address>: The current IP is 
saved on the stack

– The routine saves the registers that 
will be modified on the stack

– The local variables are defined on the 
stack

– When the function is over the stack is 
cleaned and the RET instruction is 
called which restores IP

Stack

Parameters

IP
R0
R1
R2
x
y
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External devices

• I/O devices
– Set of data registers 
– Set of control registers
– mapped on certain 

memory locations
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I/O operations

• Structure of an I/O operation
– Phase 1: prepare the device for the operation

• In case of output, data is transferred to the data buffer 
registers

• The operation parameters are set with the control 
registers

• The operation is triggered

– Phase 2: wait for the operation to be performed
• Devices are much slower than the processor

• It may take a while to get/put the data on the device

– Phase 3: complete the operation
• Error checking

• Clean up the control registers
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Example of input operation

• Phase 1: nothing

• Phase 2: wait until bit 0 of CR0 becomes 1

• Phase 3: read data from D0 and reset bit 0 of CR0
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Example of output operation

• Phase 1: write data to D1 and set bit 0 of CR1

• Phase 2: wait for bit 1 of CR1 to become 1

• Phase 3: clean CR1
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Temporal diagram

• Polling
– This technique is called “polling” because the 

processor “polls” the device until the operation is 
completed

– In general, it can be a waste of time

– The processor could execute something useful 
while the device is working

• but, how can the processor know when the device has 
completed the I/O operation?
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Interrupts

• Every processor supports an interrupt mechanism
– The processor has a special pin, called “interrupt request 

(IRQ)”

– Upon reception of a signal on the IRQ pin, 
• If interrupts are enabled, the processor suspends execution 

and invokes an “interrupt handler” routine

• If interrupts are disabled, the request is pending and will be 
served as soon as the interrupts are enabled

Start HaltFetch next
instruction

Execute
instruction

Interrupts?
Serve

Interrupt
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Interrupt handling

• Every interrupt is associated one 
“handler”

• When the interrupt arrives
– The processor suspend what is doing

– Pushes CR on the stack

– Calls the handler (pushes the IP on the 
stack)

– The handler saves the registers that will 
be modified on the stack

– Executes the interrupt handling code

– Restores the registers

– Executes IRET (restores IP and CR) 
Stack

CR

IP

R0

R1
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Input with interrupts

• Phase 1: do nothing

• Phase 2: execute other code

• Phase 3: upon reception of the interrupt, read data 
from D0, clean CR0 and return to the interrupted 
code
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Interrupts

• Let’s compare polling and interrupt

Normal
code

Interrupt
handler Phase 1

Phase 2

Phase 3

Polling
code
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The meaning of phase 3

• Phase 3 is used to signal the device that the 
interrupt has been served
– It is an handshake protocol

• The device signals the interrupt

• The processor serves the interrupt and exchanges the 
data

• The processor signals the device that it has finished 
serving the interrupt

• Now a new interrupt from the same device can be 
raised
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Interrupt  disabling

• Two special instructions
– STI: enables interrupts

– CLI: disables interrupts

– These instructions are privileged
• Can be executed only in supervisor mode

– When an interrupt arrives the processor goes 
automatically in supervisor mode

Normal
code

Interrupt
handler

CLI STI

Pending
Interrupt
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Many sources of interrupts

• Usually, processor has one single IRQ pin
– However, there are several different I/O devices

– Intel processors use an external Interrupt 
Controller

• 8 IRQ input lines, one output line
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Nesting interrupts

• Interrupt disabling
– With CLI, all interrupts are disabled

• When an interrupt is raised, 
– before calling the interrupt handler, interrupts are 

automatically disabled

– However, it is possible to explicitely call STI to re-
enable interrupts even during an interrupt handler

– In this way, we can “nest interrupts”
• One interrupt handler can itself be interrupted by 

another interrupt
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Interrupt controller

• Interrupts have priority
– IRQ0 has the highest priority, IRQ7 the lowest

• When an interrupt from a I/O device is raised
– If there are other interrupts pending

• If it is the highest priority interrupt, it is forwarded to the 
processor (raising the IRQ line)

• Otherwise, it remains pending, and it will be served 
when the processor finishes serving the current 
interrupt
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Nesting interrupts

• Why nesting interrupts?
– If interrupts are not nested, important services 

many be delayed too much
• For example, IRQ0 is the timer interrupt
• The timer interrupt is used to set the time reference of 

the system
• If the timer interrupt is delayed too much, it can get lost 

(i.e. another interrupt  from the timer could arrive before 
the previous one is served)

• Losing a timer interrupt can cause losing the correct 
time reference in the OS

• Therefore, the timer interrupt has the highest priority 
and can interrupt everything, even another “slower” 
interrupt
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Nested interrupts

Normal
code

Slow Interrupt
handler

High priority 
Interrupt handler
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Atomicity

• An hardware instruction is atomic if it cannot 
be “interleaved” with other instructions
– Atomic operations are always sequentialized

– Atomic operations cannot be interrupted
• They are safe operations

• For example, transferring one word from memory to 
register or viceversa

– Non atomic operations can be interrupted
• They are not “safe” operations

• Non elementary operations are not atomic
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Non atomic operations

• Consider a “simple” operation like
 

x = x+1;

 In assembler
 LD  R0, x

INC R0
ST x,RO

 A simple operation like incrementing a memory 
variable may consist of three machine instructions

 If the same operation is done inside an interrupt 
handler, an inconsistency can arise!
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Interrupt on non­atomic operations

int x=0;

...
x = x + 1;
...

Normal code
void handler(void)
{
    ...
    x = x + 1;
    ....
}

Handler code

...
LD R0, x
INC R0
ST x, RO
...

Save registers
...
LD R0, x
INC R0
ST x, RO
...
Restore registers

?R0

0x

CPU

memory

0

Saved registers

0

01

1

01

1
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Solving the problem in single processor

• One possibility is to disable interrupts in 
“critical sections”

...
CLI
LD R0, x
INC R0
ST x, RO
STI
...

Save registers
...
LD R0, x
INC R0
ST x, RO
...
Restore registers
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Multi­processor systems

• Symmetric multi-processors (SMP)
– Identical processors
– One shared memory

CPU 0 CPU 1 CPU 2 CPU 3

Memory
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Multi­processor systems

• Two typical organisations
– Master / Slave

• The OS runs on one processor only (master), CPU0

• When a process requires a OS service, sends a 
message to CPU0

– Symmetric
• One copy of the OS runs indipendentely on each 

processor

• They must synchronise on common data structures

• We will analyse this configuration later in the course
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Low level synchronisation in SMP

• The atomicity problem cannot be solved by 
disabling the interrupts!
– If we disable the interrupts, we protect the code 

from interrupts. 
– It is not easy to protect from other processors

...
LD R0, x
INC R0
ST x, RO
...

...
LD R0, x
INC R0
ST x, RO
...

...
LD R0, x (CPU 0)
LD R0, x (CPU 1)
INC R0 (CPU 0)
INC R0 (CPU 1)
ST x, R0 (CPU 0)
ST x, R0 (CPU 1)
...

CPU 0

CPU 1
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Low level synchronisation in SMP 

• Most processors support some special 
instruction
– XCH Exchange register with memory location

– TST If memory location = 0, set location to 1 
and return true (1), else return false (0)
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Pseudo­code for TST and XCH

XCH and TST 
are atomic!

void  xch(register R, memory x)
{

int tmp;
tmp = R; R = x; x=tmp;

}

int  tst(int x)
{

if (x == 1) return 0;
else {

x=1;
return 1;

}
}
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How they work

• XCH and TST
– the processor that executes the instruction locks the 

bus and performs two operations (read and write) 
without interference from other processors

– needs a bus arbiter 
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Locking in multi­processors

• We define one variable s
– If s == 0, then we can perform the critical operation

– If s == 1, the must wait before performing the critical 
operation

• Using XCH or TST we can implement two functions:
– lock() and unlock()
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Locking with XCH

• Since there is an active waiting, this technique is 
called spinlock

void lock(int s)
{

int a = 1;
while (a==1) XCH (s,a);

}

void unlock(int s)
{

s = 0;
}

; ------------------------------
; LOCK(S)
; ------------------------------

LD R0,1
LABEL : XCH R0, s

CMP R0, 1
JE  LABEL
...

; ------------------------------
; UNLOCK(S)
; ------------------------------

LD R0, 0
LD s, R0
...
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Locking with TST

void lock(int x)
{

while (TST (s) == 0);
}

void unlock(int s)
{

s = 0;
}

; --------------------------------
; LOCK
;---------------------------------
LABEL: TST s

JZ LABEL
....

; ------------------------------
; UNLOCK(S)
; ------------------------------

LD R0, 0
LD s, R0
...

• Again an active waiting, this is a different 
implementation of the spinlock
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Locking in multi­processors
L0: TST s

JZ L0
LD R0, x
INC R0
ST x, R0
LD R1, 0
ST s, R1

...

TST s (CPU 0)
TST s (CPU 1)
JZ L0 (CPU 0)
JZ L0 (CPU 1)
LD R0, x (CPU 0)
TST s (CPU 1)
INC R0 (CPU 0)
JZ L0 (CPU 1)
ST x, R0 (CPU 0)
TST  s (CPU 1)
LD R1, 0 (CPU 0)
JZ L0 (CPU 1)
ST s, R1 (CPU 0)
TST s (CPU 1)
... (CPU 0)
JZ L0 (CPU 1)
... (CPU 0)
LD R0, x (CPU 1)

CPU 0

CPU 1

L0: TST s
JZ L0
LD R0, x
INC R0
ST x, RO
LD R1, 0
ST s, R1

...

Lock(s)

Unlock(s)

Unlock(s)

Lock(s)

x=x+1

x=x+1
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Locking

• The lock / unlock operations are “safe”
– No matter how you interleave the operations, 

there is no possibility that the “critical parts” 
interleave

– However, spinlock  is an active wait and a 
possible wast of time

• The problem of locking is very general and 
will be analysed and solved in greater details 
later
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Spinlock

• Problem 1
– If CPU1 waits for CPU0 with a spinlock, it cannot 

execute other activities

– this is a waste of processor time

• Problem 2
– When CPU1 waits for CPU0 with a spinlock, it 

accesses memory continuosly

– It occupies the system shared bus

– It slows down the other processors! (It reduces 
considerably the bus bandwidth)
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More sophisticated techniques

• Using cache coherency
– if every processor has a local cache, a cache 

coherency algorithm ensures that the cache content is 
synchronized with the global memory

CPU0CPU0 CPU1

s=0

s=0

s=0s=1

1. Writes back 
to global 
memory

2. Invalidates 
cache line

s=0

s=1


