
Scuola Superiore Sant’Anna 

I/O subsystem

Giuseppe Lipari



ERI Gennaio 2008 2

Input – Output and Device – 
Drivers



ERI Gennaio 2008 3

Objectives of the I/O subsystem

• To hide the complexity 

• From the variability of the devices
– Provide a consinstent API

• Open(), Read(), Write(), Close(), Lseek()

– Provide a naming system
• For example, the file system

– Optimize access
• For example, through buffering and caching



ERI Gennaio 2008 4

Logical organisation

• We can distinguish two logical levels
– Device – dependent level

• Strictly depends on the particular device

– Device – independent level
• Provides an uniform interface to the user

Application

Device – independent level

Device – dependent level

HWDevice

User – level

OS – level

HW – level



ERI Gennaio 2008 5

Device ­ independent level

• In this layer, the following functionalities are 
provided
– Buffering

• It is needed to transfer data to user space
• Used to optimize the reading/writing on a device

– Error handling
• Many different kind of errors!
• Errors can be reported to the user in a meaningful way

– Allocation and spooling
• How to allocate a device to a process requesting the service
• for example, printing, visualizing, input from the 

mouse/keyboard, etc.

– Naming
• Each device is assigned a logical “identifier”
• Data on the device can be accessed through the identifier



ERI Gennaio 2008 6

Device – dependent level

• In this level
– The device driver interacts directly with the HW

– It interacts also with the device-independent level

– It provides specific access modes to the device

– It provides ways to communicate with the upper 
layer

– The interface between the d-d layer and the d-i 
level is specific for the device

• Usually, it is a set of functions very similar to the 
user/level functions open(), read(), write(), close(), etc.



ERI Gennaio 2008 7

Device drivers

• A device drivers is
– a software module of the OS that contains code 

dedicated to the interaction with a particular 
device

• Disk device driver

• Keyboard device driver, etc.

• Why device drivers
– Abstraction

– Portability

– Modularity of the OS code



ERI Gennaio 2008 8

Variability

• The device driver subsystem
– It is one of the most complex parts of the OS
– The complexity is due to the huge variability of 

devices

• Classification of I/O devices
– Human readable

• mouse, keyboad, video, printer, etc.

– Machine readable
• Disk, controllers, sensors, actuators

– Communication
• digital networks, modems



ERI Gennaio 2008 9

Characteristics of a device

• Data rate
– There can be huge differences in the speed of data transfer

• Applications
– the way in which a device is used is important to the device driver 

implementation
• for example, disk for normal user interaction, disk for web servers, 

disk for video servers, disk for virtual memory management, etc.

• Complexity of control
– From very simple (e.g. the printer) to very complex (e.g. the disk)

• Unit of transfer
– Character devices, block devices, packet devices

• Data representation
– Parity, encoding, error corrections, etc.

• Error conditions
– The way in which errors may occur, and the way they are reported 

may vary a lot



ERI Gennaio 2008 10

I/O device controller

• Let us start from the HW

• Every device has a controller that consists of 
– a dedicated small processor for I/O control

– a set of registers mapped in memory memory

• Commands
– To send commands to a I/O device, write on the registers

– To read the status of the I/O operation, read from the 
registers

• The CPU is NOT synchronised with the I/O 
processors!
– Data can arrive from the device in a asynchronous way



ERI Gennaio 2008 11

Controller Registers

• A device controller should posses at least the 
following registers

• Control register CR
– It is used to send commands to the controller

• For example, start a output data transfer, start a input data 
transfer, etc

• We assume that a start bit is defined

• Status Register SR
– It is used to check the status of the current operation and of 

the device
• For example, if the transfer has been completed, it an error 

occurred, etc.
• We assume that a flag bit is defined to signal to completion of 

any operation

• It can have also a data register/buffer and a 
Configuration register



ERI Gennaio 2008 12

External process

• We can model the I/O controller as a 
process
– it is not a real software process! it is only a model 

for its behaviour

extrernal process {
while (true) {

while (start==0);
<execute command>
<update status register>
flag = 1;

}
}



ERI Gennaio 2008 13

Character – based devices

• First, we will discuss character based 
devices
– example, the keyboard, the serial line, etc

• To transfer n bytes
– n different I/O operations

• This is the simplest case



ERI Gennaio 2008 14

Polling

• In polling, 
– the operating system directly checks the flag bits

– active waiting!

...
for (i=0; i<n; i++) {

<prepare transfer>
start = 1;
while (flag==0);
<check status>

}
…



ERI Gennaio 2008 15

Polling

• If the device is very fast, then polling may be the 
best approach
– In fact, an interrupt based mechanism involves at least a 

pair of process switches

– It the duration of the operation is less than two process 
switches, then polling is the most optimized solution

• Almost all devices are much slower than the 
processor
– usually, a data transfer takes much more than two process 

switches

– For these devices, an interrupt-based mechanism is the 
best approach



ERI Gennaio 2008 16

Interrupt based I/O

• In the controller
– The controller interrupt mechanism must be configured

• We must specify which interrupt line is dedicated to the device
• Different devices send data on different interrupts lines
• All the lines enter in the interrupt controller
• The interrupt controller will rais the interrupt pin of the 

processor

• In the processor
– The processor interrupt mechanism must be configured

• The processor has an “interrupt vector”
• For every interrupt line, the address of a function (interrupt 

handler) is specified
• When the interrupt is raised, the corresponding interrupt 

handler is invoked



ERI Gennaio 2008 17

Interrupt handling mechanism

• The device driver is written as a process
– It is a very special kind of process
– It is not a user process, but a kernel process, 

because it runs in the same address space of the 
operating system

– In the following, it will be called Internal Process, 
to distinguish from the external process

• We define a semaphore available 
– the internal process is blocked on available 

waiting for the completion of the operation
– when the interrupt handler executes, it performs 

the signal on available



ERI Gennaio 2008 18

Interrupt handler

...
for (i=0; i<n; i++) {

<prepare transfer>
start = 1;
available.wait();
<check status>

}
...

Semaphore available(0);

void handler()
{

available.signal();
}

Interrupt handler

Internal process

external process {
while (true) {

while (start==0);
<execute command>
<update status register>
flag = 1;
<raise interrupt>

}
}

External process



ERI Gennaio 2008 19

Temporal diagram

Internal
Process

Interrupt
Handler

External
Process
(device)

User 
Process



ERI Gennaio 2008 20

Some intelligence in the handler

• The previous structure has one drawback
– For each data byte, the internal process is 

executed
– This requires two process switches for every byte

• Idea
– The transfer of subsequent bytes can be done by 

the interrupt handler itself!

• Device descriptor
– It is a data structure shared by the internal 

process and the interrupt handler
– It contains a buffer of the data to be transferred



ERI Gennaio 2008 21

Device descriptor

• It contains
– A semaphore end_of_transfer, on which the internal 

process will be blocked

– The address of the device controller registers
• Status and control registers

– Number of bytes to be transferred

– Counter for number of transferred bytes

– Buffer address
• Where data is put or where data is taken

• All device descriptors are kept in a array
– The array is indexed by the device identifier

– The devide identifier is an integer that identifies the device



ERI Gennaio 2008 22

Device descriptor

struct IO_descr {
Semaphore end_of_transfer;
int counter;
int nbytes;
int *CR;
int *SR;
void *buffer;
int status;
// etc.

};

struct IO_descr dev_descr[NUM_DEVICES];



ERI Gennaio 2008 23

Read operation

• This function is invoked by the internal 
process

int read(int ddes, char *pbuf, int nbytes) {
dev_descr[ddes].nbytes = nbytes;
dev_descr[ddes].counter = 0;
dev_descr[ddes].buffer = pbuf;
<set start = 1>
dev_descr[ddes].end_of_transfer.wait();
<check status>
if (<error>) 

< return error_code>
return dev_descr[ddes].counter;

}



ERI Gennaio 2008 24

Interrupt handler
void handler() {

char b;
<check for error>
if (<no error>) {

*dev_descr[ddev].buffer = <get data from device>;
dev_descr[ddev].buffer++;
dev_descr[ddev].counter++;
if (dev_descr[ddev].counter < dev_descr[ddev].nbytes) 

<set start bit = 1>
else 

dev_descr[ddev].end_of_transfer.signal();
}
else {

if (<non critical error>) 
<retry : set start bit = 1>

else 
dev_descr[ddev].status = error_code

}
}



ERI Gennaio 2008 25

Temporal diagram

Internal
Process

Interrupt
Handler

External
Process
(device)

User 
Process



ERI Gennaio 2008 26

Direct memory access

• Many I/O controllers support Direct Memory 
Access
– Every I/O controller has a DMA interface

• A memory address register (MAR)

• A counter

– It can automatically transfer a block of bytes 
to/from memory

– At the end of the transfer, an interrupt is raised

• With DMA
– The interrupt handler becomes very simple!



ERI Gennaio 2008 27

Memory

CPU

MAR

MCR

CR

ST

Interrupt



ERI Gennaio 2008 28

Read operation

int read(int ddes, char *pbuf, int nbytes) {
dev_descr[ddes].nbytes = nbytes;
dev_descr[ddes].counter = 0;
dev_descr[ddev].buffer = pbuf;
<program DMA>
<MAR = pbuf>
<MCR = nbytes>
dev_descr[ddev].end_of_transfer.wait();
<check status>
if (<error>) 

< return error_code>
return dev_descr[ddev].counter;

}



ERI Gennaio 2008 29

Interrupt handler

void handler() {
<check for error>
if (<no error>) {

dev_descr[ddev].counter=<MCR>;
dev_descr[ddev].end_of_transfer.signal();

}
else {

if (<non critical error>) 
<retry : set start bit = 1>

else 
dev_descr[ddev].status = error_code

}
}



ERI Gennaio 2008 30

DMA

• By using DMA
– The overhead is further reduced
– The interrupt is called only once at the end of the operation
– The controller is more complex

• Overhead
– The DMA transfers data to memory on the bus
– The bus and the memory are shared between the 

processor and the I/O device
– Conflicts on the bus are resolved by the bus controller
– However, the overhead of the DMA is not 0!
– Every read/write operation from/to memory can be delayd 

because the I/O device could access the memory at the 
same time!



ERI Gennaio 2008 31

Buffering

• Goals
• Transfer data to user space

– Mechanism
• Data is first loaded into an internal buffer of the OS
• The, it is transferred into the user buffer

– Why
• For timing reasons: while reading one buffer, I can try to load 

another buffer
• For Virtual memory reasons: the memory of the process 

(which could be subject to swapping and paging) is not 
directly involved with the I/O hardware operation

• Optimized access
– Instead of loading data wehn we need them, load them in 

advance



ERI Gennaio 2008 32

Buffering

• Single buffer
– One single buffer for each device

– While the operation is performed, the process cannot 
access the buffer

• Double buffering
– Two buffers for each device

– While the operation is performed on one buffer, the other 
can be used by the process

– At the end of the reading, we can swap the buffers

• Circular buffer
– An extension of the double buffering

– It is used only in particular cases


