
Scuola Superiore Sant’Anna 

Deadlock and Starvation

Giuseppe Lipari



ERI Gennaio 2008 2

Deadlock

 Deadlock is the situation in which a group of 
threads are permanently blocked waiting for 
some resource

 Deadlock can happen in many subtle cases
 Here we will study ways of avoiding 

deadlock situations



ERI Gennaio 2008 3

DEADLOCK!!

Example of deadlock

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

Semaphore s1(1);
Semaphore s2(1);

TA

TB

s1.wait()

s2.wait()

s2.wait()

s1.wait()



ERI Gennaio 2008 4

Graphical situation

TA

TB

get s1

get s2

get s2

get s1
Deadlock
inevitable

release s2

release s1

release s1

release s2

TA and TB
want s1

TA and TB
want s2



ERI Gennaio 2008 5

Deadlock
inevitable

Graphical situation

TA

TB

get s1

get s2

get s2

get s1

release s2

release s1

release s1

release s2



ERI Gennaio 2008 6

Example with no deadlock

TA

TB

get s1

get s2
get s2

get s1

release s2

release s1

release s1

release s2



ERI Gennaio 2008 7

Other examples of deadlock

 Bad situations can happen even when the 
resource is not “on-off”

 Consider a memory allocator
 Suppose that the maximum memory allocable is 

200 Kb

void * threadA(void *)
{

request(80kb);
...
request(60kb);
...
release(140kb);

}

void * threadB(void *)
{

request(70kb);
...
request(80kb);
...
release(150kb);

}



ERI Gennaio 2008 8

Consumable and reusable resources

 Reusable resources
 It can be safely used by only one thread at time and is nod 

depleted by the use
 Threads must request the resource and later release it, so 

it can be reused by other threads
 Examples are processor, memory, semaphores, etc.

 Consumable resources
 It is created and destroyed dynamically
 Once the resource is acquired by a thread, it is immediately 

“destroyed” and cannot be reused
 Examples are messages in a FIFO queue, interrupts, I/O 

data, etc.



ERI Gennaio 2008 9

Deadlock with consumable resources

void *threadA(void *)
{

s_receive_from(threadB, msg1);
...
s_send(threadB, msg2);
...

}

void *threadB(void *)
{

s_receive_from(threadA, msg1);
...
s_send(threadA, msg2);
...

}

TA

TB

s_receive_from(threadB,msg1)

s_receive_from(threadA,msg1)



ERI Gennaio 2008 10

Conditions for deadlock

 Three conditions
 Mutual exclusion

 Only one process may use the resource at the same time
 Hold and wait

 A process may hold allocated resources when it blocks
 No preemption

 The resource cannot be revoked
 If the three above conditions hold and 

 Circular wait
 A closed chain of threads exists such that each thread holds 

at least one resources needed by the next thread in the chain
 then a deadlock can occur!
 These are necessary and sufficient conditions for a 

deadlock



ERI Gennaio 2008 11

How to solve the problem of deadlock

 To prevent deadlock from happening we can 
distinguish two class of techniques
 Static: we impose strict rules in the way resources may be 

requested so that a deadlock cannot occur
 Dynamic: dynamically, we avoid the system to enter in 

dangerous situations

 The basic idea is to avoid that one of the previous 
conditions hold

 Three strategies
 Deadlock prevention (static)
 Deadlock avoidance (dynamic)
 Deadlock detection (dynamic)



ERI Gennaio 2008 12

Conditions

 Mutual exclusion
 This cannot be disallowed. If a resource must be 

accessed in mutual exclusion, there is nothing 
else we can do!

 Hold and wait
 We can impose the tasks to take all resources at 

the same time with a single operation
 This is very restrictive! Even if we use the 

resource for a small interval of time, we must 
take it at the beginning! 

 Reduces concurrency



ERI Gennaio 2008 13

Conditions

 No preemption
 This technique can be done only if we can 

actually suspend what we are doing on a 
resource and give it to another thread

 For the “processor” resource, this is what we do 
with a thread switch!

 For other kinds of resources, we should “undo” 
what we were doing on the resource

 This may not be possible in many cases!



ERI Gennaio 2008 14

Conditions

 Circular wait
 This condition can be prevented by defining a 

linear ordering of the resources
 For example: we impose that each thread must 

access resources in a certain well-defined order

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}



ERI Gennaio 2008 15

Why this strategy works?

 Let us define a oriented graph
 A vertex can be 

a thread (round vertex)
a resource (square vertex)

 An arrow from a thread to a resource denotes 
that the thread requires the resource

 An arrow from a resource to a thread denotes 
that the resource is granted to the thread

 Deadlock definition
 A deadlock happens if at some point in time there 

is a cycle in the graph



ERI Gennaio 2008 16

Graph

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

TA

TB

S1

S2



ERI Gennaio 2008 17

Theorem

 If all threads access resources in a given order, a 
deadlock cannot occur
 Proof: by contradiction.
 Suppose that a deadlock occurs. Then, there is a cycle. 
 By hypothesis all threads access resources by order
 Therefore, each thread is blocked on a resource that has 

an order number grater than the resources it holds.
 Starting from a thread and following the cycle, the order 

number of the resource should always increase. However, 
since there is a cycle, we go back to the first thread. Then 
there must be a thread T that holds a resource Ra and 
requests a Resource Rb with Ra < Rb

 This is a contradiction! 



ERI Gennaio 2008 18

Hierarchies of locks

• To use the previous technique efficiently
– divide the software into layers (usually the SW is 

already in layers!)

– Each layer defines its own locks and semaphores

– A layer can only call functions from the same layer or 
from lower layers

– In this way the resource ordering is automatically 
guaranteed



ERI Gennaio 2008 19

Deadlock avoidance

 This technique consists in monitoring the 
system to avoid deadlock
 We check the behaviour of the system
 If we see that we are going into a dangerous 

situation, we block the thread that is doing the 
request, even if the resource is free



ERI Gennaio 2008 20

Deadlock detection

 In this strategy, we monitor the system to 
check for deadlocks after they happen
 We look for cycles between threads and 

resources
 How often should we look?

 It is a complex thing to do, so it takes precious 
processing time

 It can be done not so often
 Once we discover deadlock, we must recover
 The idea is to kill some blocked thread



ERI Gennaio 2008 21

Recovery

1. Abort all threads
 Used in almost all OS. The simplest thing to do.

2. Check point
 All threads define safe check points. When the OS 

discover a deadlock, all involved threads are restarted to 
a previous check point

 Problem. The can go in the same deadlock again!
3. Abort one thread at time

 Threads are aborted one after the other until deadlock 
disappears

4. Successively preempt resources
 Preempt resources one at time until the deadlock 

disappears


