Scuola Superiore ;? .
1 ettrs

i Stusi Universitars & di Perfezianamenta Real-Time Systems Laboratory

Form embedded O.S. to

Code Generation
Mauro Marinoni [ninckevidence .eu. com]

Retis Lab
Scuola Superiore Sant'Anna

s

:;fo“‘de“ce

%}\de“ce

Aknoledgement

» A special thanks

to Paolo Gai
(Evidence S.r.l.)
for the sopport
preparing this
presentation.

I
R 2/66
B

g,\der\ce
Objectives

» Embedded O.S.
» OSEK standard
» Erika kernel
» Hardware platform
» FLEX board
» Demo addon board
» Scilab/Scicos
» Embedded Codegen
» Structure and implementation
» Examples

I
R 3166
S

Scuola Superiore
+) Sant’Anna
Studi Universitars & di Perl

Embedded O.S.

s

e

g,\der\ce

Why an embedded O.S. ?

» It reduces the complexity of the
application;

» It increases the reusability of the code;
» It simplify the SW debugging;

» It reduces the time to market:

> ...

I
R 5166
S

g,\der\ce

Why a Real-Time embedded O.S. 7%

» An embedded applications tipically
presents a lot of interactions with
the environment;

» That requires a management of the
response time to an external event.

I
R 6/66
S

g'\j\de"\ce

Developement scenario

Typical scenario for an embedded system:

» microcontroller (typically with reduced number instruction)
» lack of resources (especially RAM!!!)

» dedicated HW

» dedicated interaction patterns
» a microwave oven is NOT a general purpose computer

These assumptions leads to different programming styles,
and to SW architectures different from general purpose

g'\j\de"\ce
The footprint problem...

» Considering typical multiprogrammed environments:
» a full-fledged POSIX footprint is around 1 Mb
» use of profiles to support subset of the standard
» a profile is a subset of the full standard that lists a set of
services typically used in a given environment
» POSIX real time profiles are specified by the ISO/IEEE
standard 1003.13
» The system we want to be able must fit on a typical
system-on-chip memory footprint

POSIX top-down approach

» POSIX defines a top-down approach towards
embedded systems API design

»the interface was widely accepted when the profiles
came out

»these profiles allow easy upgrades to more powerful
systems

» possibility to reuse previous knowledges and code
» PSE51 systems around 50-150 Kbytes
»that size fits for many embedded devices, like single

computers. »that is, around 10 Kb of code and around 1 Kb of RAM...
1 1
@et?’c 7res @et?’c 8res
g'\j\de"\ce g'\,\de\’\@

SoC needs bottom-up approaches!

» we would like to have footprint in the order of 1-10 Kb
» the idea is to have a bottom-up approach
» starting from scratch, design
» a minimal system
» that provides a minimal API
» that is able to efficiently describe embedded systems
» with stringent temporal requirements
> with limited resources
Results:

board PCs » RTOS standards (OSEK-VDX, ulTRON)
> SHaRK is a PSE51 compliant system > 2 Kbytes typical footprint
A i
7—*?6?‘7' < 9/66 I—?eff < 10166
g'\j\de"\ce g'\,\de\’\@

What is OSEK/VDX?

» It is a standard for an open-ended architecture for
distributed control units in vehicles
» The name:

» OSEK: Offene Systeme und deren Schnittstellen fiir die Elektronik
im Kraft-fahrzeug (Open systems and the corresponding
interfaces for automotive electronics)

» VDX: Vehicle Distributed eXecutive (another french proposal of
API similar to OSEK)

» OSEK/VDX is the interface resulted from the merge of the two
projects (http://www.osek-vdx.org)

» Motivations:

» high, recurring expenses in the development and variant
management of non-application related aspects of control unit
software.

» incompatibility of control units made by different manufacturers
due to different interfaces and protocols.

1
z—?ef‘fc 11766

Objectives

» portability and reusability of the application
software

» specification of abstract interfaces for RTOS and
network management

» specification independent from the HW/network
details

» scalability between different requirements to
adapt to particular application needs

» verification of functionality and implementation
using a standardized certification process

1
z—?ef‘fc 12/66

gx,\de\’\ce

Advantages

> clear savings in costs and development time.

» enhanced quality of the software

» creation of a market of uniform competitors

»independence from the implementation and
standardised interfacing features for control units
with different architectural designs

» intelligent usage of the hardware present on the
vehicle

» for example, using a vehicle network the ABS controller
could give a speed feedback to the powertrain
microcontroller

I
I—?eff'r 13/66

ng\de"\ce

System philosophy

» standard interface ideal for automotive applications
» scalability
» using conformance classes
» configurable error checking
» portability of software
» the firmware on an automotive ECU is 10% RTOS and 90% drivers
» Static is better:
» everything is specified before the system runs
» static approach to system configuration
» no dynamic allocation on memory
» no dynamic creation of tasks
> no flexibility in the specification of the constraints
» custom languages that helps off-line configuration of the system
» OIL: parameters specification (tasks, resources, stacks...)
» KOIL: kernel aware debugging

I
I—?eff'r 14766

ng\de"\ce

Support for automotive requirements

» the idea is to create a system that is
» reliable
» with real-time predictability
» support for
» fixed priority scheduling with immediate priority ceiling
» non preemptive scheduling

gx,\de\’\ce

Application building process

[input

drivers configuration [output

DIL
device drivers [third part libraries
templates
OIL
Conf. Tool / Debugger

RTOS configuration
OoIL

OSEK/VDX standards

» The OSEK/VDX consortium packs its standards
in different documents

» OSEK OS operating system
» OSEK Time time triggered operating system
» OSEK COM communication services

»OSEK FTCOM fault tolerant communication

» preemption thresholds ‘ RTOS configuration device drivers ‘ ORTI description ‘ binary image
» ROM execution of code C code C/ASM code KOIL elf
» stack sharing (limited support for blocking primitives)
» documented system primitives
> behavior /
N : application C/IASM 5
» performance of a given RTOS must be known \-I
1 1 - a
7—*?61‘7' < 15/66 I—?eff < 16/66
ﬁ\,\de“@ ﬁ“‘“e“@

Processing levels

»the OSEK OS specification describes the
processing levels that have to be supported by
an OSEK operating system

i § y
Thl = e
-\.--
W .

» OSEK NM network management I ..| o B
»OSEK OIL kernel configuration [e =
» OSEK ORTI kernel awareness for debuggers B ra
Eﬂ ef'?-‘; 17166 z')ef'?'-; — - 18166

ng\de"\ce

Conformance classes

» OSEK OS should be scalable with the application needs
» different applications require different services
» the system services are mapped in Conformance Classes
» a conformance class is a subset of the OSEK OS standard
> objectives of the conformance classes
» allow partial implementation of the standard
» allow an upgrade path between classes
» services that discriminates the different conformance
classes
» multiple requests of task activations
» task types
» number of tasks per priority

1
I—?eff'r 19766

ng\de"\ce

Conformance classes

» There are four conformance classes
» BCC1
basic tasks, one activation, one task per priority
» BCC2
BCC1 plus: > 1 activation, > 1 task per priority
» ECC1
BCC1 plus: extended tasks
» ECC2
ECCH1 plus: > 1 activation (basic tasks), > 1 task per priority

T

|
s e]

, |
I—?eff'r 20/66

ng\de"\ce

Basic tasks

» abasic task is
» a C function call that is executed in a proper context
» that can never block
» can lock resources
» can only finish or be preempted by an higher priority task or ISR
» a basic task is ideal for implementing a kernel-supported stack sharing,
because
» the task never blocks
» when the function call ends, the task ends, and its local variables are
destroyed
> in other words, it uses a one-shot task model
» support for multiple activations

» in BCC2, ECC2, basic tasks can store pending activations (a task can be
activated while it is still running)

1
I—?eff'r 21/66

ng\de"\ce

Extended tasks

» extended tasks can use events for synchronization
» an event is simply an abstraction of a bit mask
» events can be set/reset using appropriate primitives
» atask can wait for an event in event mask to be set
» extended tasks typically
» have its own stack
» are activated once
» have as body an infinite loop over a WaitEvent() primitive
» extended tasks do not support for multiple activations
» ... but supports multiple pending events

1
I—?eff'r 22/66

gx,\de\’\ce

Scheduling algorithm

»the scheduling algorithm is fundamentally a
»fixed priority scheduler
»with immediate priority ceiling
»with preemption threshold

»the approach allows the implementation of
»preemptive scheduling
»non preemptive scheduling
»mixed

1
I—?eff'r 23/66

gx,\de\’\ce

Interrupt service routine

» OSEK OS directly addresses interrupt management in the
standard API

» interrupt service routines (ISR) can be of two types

» Category 1: without API calls simpler and faster, do not implement a
call to the scheduler at the end of the ISR

» Category 2: with APl calls these ISR can call some primitives
(ActivateTask, ...) that change the scheduling behavior. The end of
the ISR is a rescheduling point

» ISR 1 has always a higher priority of ISR 2

» finally, the OSEK standard has functions to directly
manipulate the CPU interrupt status

1
I&. ef'?-‘; 24/66

ng\de"\ce
Counters and alarms

» Counter
»is a memory location or a hardware resource used to
count events
» for example, a counter can count the number of timer
interrupts to implement a time reference
» Alarm
»is a service used to process recurring events
»an alarm can be cyclic or one shot
»when the alarm fires, a notification takes place
»task activation
» call of a callback function
» set of an event

1
I—?eff';‘ 25/66

ng\de"\ce

Application modes

»0OSEK OS supports the concept of
application modes
»an application mode is used to influence
the behavior of the device
»example of application modes
»normal operation
»debug mode
»diagnostic mode

VT

1
I—?eff';‘ 26166

gx,\de\’\ce
Hooks

» OSEK OS specifies a set of
hooks that are called at specific_
times €

» StartupHook bt | SR -— =iy =“_T
when tphe system starts B Im = = —

» PreTaskHook - e
before a task is scheduled

» PostTaskHook s TN i
after a task has finished its slice —

» ShutdownHook L_L p—
when the system is shutting . 4
down

» ErrorHook
when a primitive returns an error

1
I—?eff';‘ 27166

ng\de"\ce

Error handling

» the OSEK OS has two types or error return values
» standard error
(only errors related to the runtime behavior are returned)
» extended error
(more errors are returned, useful when debugging)
» the user have two ways of handling these errors
» distributed error checking
the user checks the return value of each primitive
» centralized error checking

the user provides a ErrorHook that is called whenever an error
condition occurs

» macros can be used to understand which is the failing primitive and
what are the parameters passed to it

1
I—?eff';‘ 28166

ng\de"\ce
OSEK OIL

» goal
» provide a mechanism to configure an OSEK application inside a
particular CPU (for each CPU there is one OIL description)
» the OIL language
» allows the user to define objects with properties
(e.g., a task that has a priority)
» some object and properties have a behavior specified by the
standard
» an OIL file is divided in two parts
» an implementation definition
defines the objects that are present and their properties
» an application definition
define the instances of the available objects for a given application

1
I—?eff';‘ 29/66

gx,\de\’\ce

OSEK OIL objects

» The OIL specification defines the properties of the following
objects:
» CPU
the CPU on which the application runs
» 0S
the OSEK OS which runs on the CPU
» ISR
interrupt service routines supported by OS
» RESOURCE
the resources which can be occupied by a task
» TASK
the task handled by the OS
» COUNTER
the counter represents hardware/software tick source for alarms.

1
I—?eff';‘ 30/66

ng\de"\ce

OSEK OIL objects (2)

» EVENT

the event owned by a task. A
» ALARM

the alarm is based on a counter
» MESSAGE

» COM
the communication subsystem
» NM
the network management subsystem

1
Ezfz'-r

the COM message which provides local or network communication

31/66

\3encs
< &
§

OIL example: implementation definition

OIL_VERSION = "2.4";

IMPLEMENTATION my_osek_kernel {
[...]
TASK {
BOOLEAN [
TRUE { APPMODE_TYPE APPMODE([]; }
FALSE
] AUTOSTART;
UINT32 PRIORITY;
UINT32 ACTIVATION = 1;
ENUM [NON, FULL] SCHEDULE
EVENT_TYPE EVENT(];
RESOURCE_TYPE RESOURCE[];

/* my_osek_kernel specific values */
ENUM [
SHARED,
PRIVATE { UINT32 SIZE; }
] STACK;
}i
1

[
"Rl
- 32/66
| Beris

ng\de"\ce

OIL example: application definition

CPU my_application {
TASK Taskl {
PRIORITY = 0x01;
ACTIVATION = 1;
SCHEDULE = FULL;
AUTOSTART = TRUE;
STACK = SHARED;

33/66

ng\der\ce
OSEK ORTI

» once having defined the OIL objects and the OS API, there is the need
to let the debugger know informations about the kernel and about the
application

» ORTI is basically a language that provides the so-called kernel
awareness

» benefits

» OS implementers easily gain support from debugging tools
» tool vendors can develop only one tool to implement awareness
» customers have free choice over OSes and and debuggers
the language is again divided in two parts
» declaration section
defines the objects that are present and their properties
» information section
describes the objects really present in the system

I
R 34/66
S

v

ng\der\ce
OSEK ORTI objects

» The ORTI specification defines the properties of the
following objects:
> 0S
» TASK
» CONTEXT
subset of the informations saved by the OS for a task
» STACK
a stack memory area
» ALARM
» RESOURCE
» MESSAGECONTAINER
a communication message

1
Bzfz'-r

35/66

ng\der\ce

ORTI example: declaration section

VERSION {
KOIL = "2.1";
OSSEMANTICS = "ORTI", "2.1";

b
IMPLEMENTATION OSTEST1_ORTI (
[

TASK {

ENUM "int" [
"Not Running (0)" = 0
"0x1" = Ox1
"0x2" = 0x2
"0x4" = 0x4
"0x8" = 0x8

] PRIORITY , "Actual Prio";
ENUM "unsigned char" [
"RUNNING"=0,

"SUSPENDED"=3
] STATE, "Task State";
CTYPE "int" CURRENTACTIVATIONS, "Current activations";
bi
[...]

bi
i
- 36/66
| Beris

ng\der\ce

ORTI example: information section

TASK thread0 {
PRIORITY = " (ERIKA_ORTI_th priority[0])";
STATE = " (ERIKA_th status[0])";
CURRENTACTIVATIONS = " (1 - ERIKA th rnact[0])";

I
R 37/66
B

b\de\’\ce
OSEK COM

» The OSEK COM standard provides an interface for
communication inter- and intra- ECU

» main features
» four conformance classes
» user can send message objects (defined in the OIL file)
» message objects can be queued or non queued
» queued and unqueued message objects
» one-to-one and one-to-many communication supported
» support for filtering undesired messages
» support for transparent network support using IPDUs
» support for Network Management (OSEK NM)
| > NM is related to the safety and reliability of the network
f“Z- < 38/66

ng\de"\ce
OSEK NM

» describes node-related (local) and network-related (global)
management methods
» services provided
» initialization of ECU resources, e.g. network interface
» start-up of the network
» network configuration
» management of different mechanisms for node monitoring
» detecting, processing and signaling of operating states for network
and nodes
» reading and setting of network- and node-specific parameters
» coordination of global operation modes
» (e.g. network wide sleep mode)
» support of diagnosis

I
R 39/66
S

b\de\’\ce

1/0 Management architecture

» the application calls 1/O functions
» typical I/O functions are non-blocking

» OSEK BCC1/BCC2 does not have blocking primitives
» blocking primitives can be implemented

> with OSEK ECC1/ECC2

» not straightforward

» the driver can use
» polling
» typically used for low bandwidth, fast interfaces
» typically non-blocking
» typically independent from the RTOS

I
R 40/66
S

ng\der\ce

I/0 Management architecture (2)

»Interrupts
»there are a lot of interrupts in the system
»interrupts nesting often enabled

»most of the interrupts are ISR1 (independent from
the RTOS) because of runtime efficiency

»one ISR2 that handles the notifications to the
application

»DMA

»typically used for high-bandwidth devices
(e.g., transfers from memory to device)

I
R 41766
S

ng\de"\ce

I/0 Management: using ISR2

1/O Driver w
global
data
Library API
i
‘ Application callback ‘

I
R 42/66
S

Q\de“ce

I/0 Management architecture (3)

» another option is to use the ISR2 inside the driver to wake
up a driver task

» the driver task will be scheduled by the RTOS together
with the other application tasks

I/0 Driver W

Q\der\ce
ERIKA Enterprise

ERIKA Enterprise

» OSEK-like RTOS for minimal embedded systems
1-4 Kb ROM footprint

enhanced scheduling algorithms

support for Lauterbach Trace32

VvV V VY

RT-Druid
» RTOS configuration using OSEK OIL

Supported MCU

Currently available as a product for:

» Microchip dsPIC

» Atmel AVR

» Altera NIOS Il (with multi-core support!)
Also available for:

» ARM7TDMI
(Samsung KS32C50100, Triscend A7, ST Janus, ST
STA2051)

» Hitachi H8 (RCX/Lego Mindstorms)

» Tricore 1

» PPC 5xx (PPC 566EVB)

> C167/ST10 (Ertec EVA 167, tiny/large mem. model)

R 45/66
S

i i » schedulability analysis e'CI ipse
‘Application m ‘ » integrated in eclipse.org
E!‘i‘;‘ 43166 E!‘i‘;‘ 44166
g'\,\der\ce g'\‘\de“ce

Erika Enterprise

Supported API

» OSEK OS (BCC1, BCC2, ECC1, ECC2)
» OSEK OIL 1.4.1

» OSEK ORTI 2.1.1 for Lauterbach Trace32
» reduced OSEK API for EE Basic

Features

» preemptive fixed priority multithreading

» Immediate Priority Ceiling to avoid priority inversion
» stack sharing to reduce stack RAM usage
» support for multicore devices

» small footprint

» fast execution time

I
R 46166
S

Q\der\ce

Erika Enterprise

Support for guaranteed Real-Time Scheduling
» Fixed Priority (OSEK)
» EDF schedulers and Resource Reservation

» multiprocessor implementation of Fixed priority
and EDF (MSRP)

Reduced memory requirements

» stack sharing using preemption thresholds
and one shot task model

» stack optimization algorithms available

I
R 47166
S

Q\der\ce

Erika Enterprise: footprint on dsPIC30

» FP kernel, monostack, 4 tasks, 1 resource

Code footprint (24-bit instructions): 244 (732 bytes)

» ISR2 stub (for each IRQ) 24
» IRQend 23
» kernel global functions 67
» ActivateTask 43
» GetResource + ReleaseResource 42
» Task end 45

Data footprint (bytes)
» ROM 26
» RAM 42

I
R 48166
S

g'\‘\de“ce

An RTOS for dsPIC

but which footprint?
cpde
size POSIX
PSE54
1000kb (Linux, FreeBSD)
100kb POSIX
PSE5152 | [
L TT 7RoN
10kb
OSEK/VDX dsPIC zone
kb

I
R 49/66
B

Scuola Superiore
ant’Anna

i Studi Univérsitars & di Pecfeziananmento

Hardware platform

3 nce
i g

g'\,\der\ce

Why another Evaluation Board?

» Tipically, demo boards are:
> big!
» limited pin counts MCU
» most of the pins used for LEDs, buttons, ...
» difficult to expand!
» poor connection with developement PC

» FLEX:
> small size (7x10 cm) F Lex
» 100 pin dsPIC

> all pins free on connectors
» 2.54 pitch, no SMD expertise required!
» PIC18 for USB connection

I
R 51/66
S

g'\,\der\ce

FLEX: other features

» switching power supply
»resettable fuses
»dsPIC programming from USB

»daughter boards (Thru Hole, CAN, SPI,
Ethernet, RS232, RS485, RS422, ...[other
coming soon])

> support fot ERIKA O.S.

I
R 52/66
S

g'\,\der\ce

FLEX: versions

FIEX

1 e [s . -
R 53/66
S

g'\,\der\ce

FLEX: add-on boards

Available:

» Thru Hole

» Multibus
(CAN, SPI, 12C,

Serial, Ethernet,
Konnex)

»DemoBoard

I
R 54/66
S

Q\de“ce

FLEX: Multibus board

1 - Serial port 2
(RS232/RS422/
RS485 / TP-UART)
2 - Serial port 1
(RS232/RS422/
RS485)

3 - CAN port 1
4 - CAN port 2
5 - 12C port

6 - SPI port

7 - 10Mbit Ethernet

8 - RJ45 Ethernet
55/66

Q\de“ce

FLEX: Demo Board

LCD 2x16

8 LED

4 buttons
Accelerometer

DAC

Temperature sensor
Light sensor

Infrared I/O
RS232/485/422 socket

56 /66

Q\de“ce

HW demos

» XBee, compass, ultrasound receiver

» TCP/IP demo

» DC Motor identification E

I
B 57/66
S

Q\de“ce

HW demos

»FLEX Board

»ERIKA Enterprise
»Chipcon 2420 Transceiver
»CMOS Camera
»Microchip MAC Layer

L
| Seris

»Image transfer using 802.15.4

58/ 66

Scuola Superiore
Sant’Anna

i Studi Univérsitars & di Pecfeziananmento

Scilab & Scicos

s

Q\der\ce

What is Scicos?

Scilab is a scientific software package for numerical
computations providing a powerful open computing
for and scientific

Scilab is OS independent:

* Windows (including Vista)
* Unix, Linux,

*Mac OSX

* ... your custom 0.8. ©

Scilab is hardware platform independent.

Scilab is an open source software. Since 1994 it has
been distributed freely along with the source code via
the Internet. It is currently used in educational and
industrial environments around the world. Scilab is now

the responsibility of the Scilab Consortium, launched in

* Signal processing
May 2003, * I

L
| Seris

A number of toolboxes are available
with the system:

*2-D and 3-D graphics
* Linear algebra
* sparse matrices
* Polynomials
* Rational functions
* Interpolation
* approximation
* Simulation:
ODE solver and
DAE solver
* Scicos: a hybrid dynamic
systems modeller and

—— simulator

* Classic and robust
control, LMI opt.

60 /66

10

ng\de"\ce

Scicos is ...

Scicos is a graphical dynamical system simulator toolbox bt in Scilab.
With Scicos you can create block diagrams to model and

simulate the dynamics of hybrid systems, control real system
in real time with Scicos Hardware In the Loop (Scicos-HIL)
and compile your models into executable code for faster
simulation and stand alone embedded applications.

With Scicos you can:

* Graphically model, compile, and simulate dynamical systems
* Combine continuous and discrete-time behaviours in the same model
* Select model elements from Palettes of standard blocks

* Program new blocks in C, Fortran, or Scilab Language

* Run simulations in batch mode from Sciab environment

. using a

*Run simulations i real time with real devices using Scicos-HIL

Scicos is used for signal processing, control systems, queuing
systems, and to study physical and biological systems.
New extensions allow generation of component based physical

* Generate hard real-time control executables with Scicos-RTAI

s
* Use implicit blocks developed in the Modelica language

ng\de"\ce

Scilab: technology roadmap

> Objectives (2008 — 2011):

Planned major technical developments:
» Graphics, Scilab GUI and GUI builder L]
> Scicos industrialization (GUI, quality,...) S C 'l
» Documentation
> New kernel, 64 bits and 128 bits technology
» Improvement and updating of algorithms: control, signal processing, identification, ...

> Excellence domains:
» Interoperability (with standard scientific software) and services architecture
» HPC (High Performance Computing), Grid Computing, parallel computing, multi-core

Sc‘im

» R & D: developments in collaboration with research

> Scilab 5.0 (2008):

What do you need for your embedded
RT applications?

Fast »Reduced development time = Minimum
aster Time To Market
> Better tools

» Access to source code and development chain

»High quality, flexibility, market superiority
» Knowledge
» Collaboration
» Independence

Better

»Competitive
» No patent
» No royalties
> No hidden costs
» Protected by OS licenses

I
R 63/66
S

Cheaper

modelling of electrical and hydraulic circuits using the Modelica » New license: CeCILL (GPL2 com anble) and GPL2.
language. : P : 1l —
» Modularization > L=
T
» New and graphics rendering GUI =
I _—
- 61/66 - 62/66
| S eris tis
\dencs b\deﬂce

Scilab / Scicos Scim

For modeling and Simulation

» Scilab: Scilab language (script)

» Scilab: integration with other programming languages (C/C++, Java, FORTRAN, etc.)
» Scicos: Scicos diagram (visual programming)

> Scicos: integration with other simulation platform (Modelica, GHDL, etc)

But also for embedded applications

»Code Generation from
Scicos diagram

» Scicos internal GP code generator
» Scicos-RTAI: for Linux RTAI

>Real Time simulation

with real plants

Scicos Hardware In the Loop
» Scicos-HIL: the Scicos simulator

executes the control section in systems
real time and uses data : f

me » Scicos-FLEX: for micro controllers
acquisition cards for the and DSPs

connection with the real plant

I
R 64166
S

ng\der\ce

Code Generation with Scilab/Scicos

Scicos functional INRIA/SUPSI

modeling |:> Code Generator

Same -
Behavior! HW + Erika
Enterprise

Simulation

I
R 65/66
S

cuola Superiore
Anna

tari & di Prcfeziananmento

Studi

Code Generator

nce
i g

11

g'\nde“ce

Code Generator

» It converts a Scicos superblock into a
dsPIC application ready to be executed by
the MCU.

» It supports
controller.

» One and only one source of time is required.

@

w

single-rate single-task

L3

|
ﬁ' 3 f‘Z- < 67 /66

g'\nde“ce

dsPIC and FLEX support

» A set of palette for the specific Hardware has
been produced.

|

[EFCTTT BT

I
It

iy l

f

I
R 68166
B

g'\l\der\ce

Code Execution - Time

» The Scicos superblock

g'\l\der\ce

Code - Execution Order

» To each block is connected a function

» Some parameters are required by the
generation engine.

ri= d
- 71/66
e

is mac?'petgslt(o an Erika s) > Init, loOut or Close depending on the
perioaic . system status
>Thtﬁ task .'Sd exrcle_cgte_d O] > The application is executed block by
‘év(;uaﬁ t%en(ihew Sliicolz N e — block (function by function) following the
Timesource period. = data path ®
» Some tricks are needed
in order to improve . .
performancies. — S SO
E‘ 3 f“z“;‘ 69 /66 ﬁi 3 f‘Z“;‘ 70/66
b\deﬂce 2 e
Generation Parameters Questions

I
R 72/66
S

12

Scuola Superiore
Sant’Auna

i Studi Univérsitars & di Pecfeziananmento

VMauro Marinoni

[ninoRevidence.eu.com]

»Retis:
>http://retis.sssup.it
»Evidence:

» http://www.evidence.eu.com

»Scilab:
»http://www.scilab.org

nce
sl e

13

