Mode change

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

May 20, 2008

http://feanor.sssup.it/~lipari

Modes

@ The system can have different working modes

@ Each mode defines the same system under different
working conditions;
@ As an example, consider an airplane;
@ Typical modes are take-off, cruise, and landing;
@ During each mode, the system has different control goals;
and it must run different control algorithms.

Modes and transistions

@ Modes can be represented by a state machine. For
example, consider the previous example of airplane
control:

Gy o>)

lined up destination

Modes and transistions

@ A mode is a node in the diagram (a state)
@ A transition is an edge between two nodes:

@ A transition happens when certain conditions are verified;
@ For example, a user command, an internal condition, an
external condition;

@ Upon the occurrence of a transition:

@ terminate all tasks that are in the current mode and will not
be active in the new mode;

@ call a transition function;

@ activate the new set of tasks to be executed.

Modes and tasks

@ To implement modes:

@ In general, there will be one global variable that identifies
the current working mode (currmode);

@ One manager task that identifies when modes must be
changed,
@ Modes can be implemented in two basic ways;

© Type 1 A fixed set of tasks for all the modes; each task can
execute different algorithms depending on the current
mode;

@ Type 2 A different set of tasks for each mode.

@ Of course, it is also possible to mix the two
implementations.

Mode changes and consistency

@ There are several problems the designer must deal with
when designing an multi-mode real-time system;

@ The main problem is what happens during the transition
between two modes. In particular, we must deadl with

© How to change mode
@ Consistency of variables
© Schedulability analysis

@ Now we start dealing with problems 1 and 2.

Consistency

@ Clearly, we cannot change the control algorithm at an
arbitrary point while the algorithm is executing;

@ A control algorithm updates its internal state variables while
executing;

@ we must ensure that the state variable does not remain in
an inconsistent state when we change mode;

@ the same happens if the task is accessing a shared
resource with a critical section protected by a mutex; we
cannot interrupt it and change algorithm, otherwise the
mutex remains locked!

@ This means that the change of control algorithm must be
synchronized with appropriate checkpoints;

@ A checkpoint is a point in the code when is safe to interrupt
the algorithm maintaining the consistency of the data;

@ The “easiest” checkpoints are at the beginning and at the
end of the task instance.

Implementation type 1

@ Suppose we synchronize at the beginning of the task
instance. The code for each task is something like the
following;

while(1) {

switch (currnode) {

nmodel : // control algorithm
// for nmode 1
br eak;

mode2 : // control algorithm
/1 for node 2
br eak;

default : break

}

task_endcycl e();

Implementation type 1 - I

@ The task cannot change mode while is executing. It can
only change mode at the beginning of one of its istance;

@ In this way we guarantee consistency of internal and
external variables (state variables and output variables).

@ To introduce other checkpoints, we could complicate the
code by dividing each conrol algorithm in different blocks,
and check the change of mode at the end of each block.

Implementation type 2

@ In this case, each task can be active only in a subset of the
modes.
@ Define 7; the tasks active in mode 1, and 7, the task active
in mode 2.
@ Suppose that the list of modes for which a task is active are
stored in 2-dimension array modes[task][mode].
@ Iftask i is active in mode currmode, then
modesJi][currmode] is true, otherwise it is false.

@ Typical code of the task;

while (1) {
/1 control algorithm
if (!node[i][currnode]) task_disable();
task_endcycle();

@ The primitive task_disable() suspends the periodic
activations; they will be enabled again by an explicit
task_activate ()

Type 1 vs. type 2

@ Intype 1, all tasks have the same parameters (period and
priority) in every mode;

@ In type 2, we have different tasks for different modes:
therefore, from one mode to the other, we can change both
the period, the priority and the computation time of a task.

@ Type 2 is more general, whereas type 1 is more simple to
implement.

Mode manager

@ In both cases, we need a “mode manager” task that
controls when the mode must be changed.

@ The mode manager can be a periodic or aperiodic task;

@ In the first case (periodic), it periodically observe the state
of the system and of the external variables and decided a
mode change;

@ In the second case (aperiodic), it is attached to an external
interrupt (external condition) or it is explicitely activated by
another task.

@ The mode manager implements the state machine and
controls transition between modes.

@ From now on, we consider only type 2 implementations.

Implementation type 2: manager

@ The task manager is structured as follows

while (1) {
i f (nodel sChanged()) {
ol d_node = curr_node;
curr_nmode = get Newhbde();
transition(ol d_node, new_node);
for (i=0; i < NTASK; i++) {
if (mode[i][curr_node] && !node[i][ol d_node])
task_activate(tid[i]);
}
}

task_endcycl e();

}

Mode Manager

@ The manager is a periodic task that periodically checks for
occurrence of mode changes.

@ It waits for a change of mode (function modelsChanged())

@ When it happens, performs transition functions and
activates all tasks belonging to the new mode and not
active in the old mode.

Transitions

@ Suppose the system must change from mode 1 to mode 2.

@ To ensure a smooth transition between two modes, the
states of control algorithms of mode 2 must be properly
initialized;

@ In other words, the initial conditions of mode 2 depend on
the state conditions of mode 1.

@ Suppose, as an example, that we want to guarantee
continuity of the signal and of the first derivative of the
signal.

@ The, the internal conditions of the controller for mode 2
must be set so to ensure these two conditions;

@ From a software point of view, for each transition we must
call a set of functions to adjust the initial conditions of all
control algorithms.

Scheduling analysis

Another important problem is schedulability:

Suppose we are changing from mode 1 to mode 2, and
that 7; is the set of tasks active in mode 1 and 75 is the set
of tasks that are active during mode 2.

o Set 71\7; is the set of tasks that leave the mode;

@ Set 7;\7; is the set of tasks that enter the mode.
It is important to guarantee that the system continue to be
schedulable;

Even if 7; and 75, each one considered in isolation, are
schedulable, if the transistion is not done properly, some
deadline could be missed during the transitory.

Example of deadline miss during transition

@ Consider 7; = {7‘1,7’2,7’3} and 7, = {7‘1,7’4,7’5} with:
o 1 =(1,4), »=(2,9), 3=(5,12),and 74 = (3,9)
@ Transition starts attimet =9

1

=
HEE |
T

73

T4

0 2 4 6 8 10 12 14 16 18 20 22 24

@ Mode change at time 9.

Example of deadline miss during transition

@ Consider 7; = {7‘1,7’2,7’3} and 7, = {7‘1,7’4,7’5} with:
o 1 =(1,4), »=(2,9), 3=(5,12),and 74 = (3,9)
@ Transition starts attimet =9

N SRR R - R
HEE |
UL |

T4

0 2 4 6 8 10 12 14 16 18 20 22 24

@ Mode change at time 9.

Example of deadline miss during transition

@ Consider 7; = {7‘1,7’2,7’3} and 7, = {7‘1,7’4,7’5} with:
o 1 =(1,4), »=(2,9), 3=(5,12),and 74 = (3,9)
@ Transition starts attimet =9

N SRR R - R

HEE |
UL |

g T |

0 2 4 6 8 10 12 14 16 18 20 22 24

@ Mode change at time 9.
@ Task 74 executes instead of task » fromtimet = 9

Example of deadline miss during transition

@ Consider 7; = {7‘1,7’2,7’3} and 7, = {7‘1,7’4,7’5} with:
o 1 =(1,4), »=(2,9), 3=(5,12),and 74 = (3,9)
@ Transition starts attimet =9

S S - . -
gRE== |

L e e =

" S |

0 2 4 6 8 10 12 14 16 18 20 22 24

@ Mode change at time 9.
@ Task 74 executes instead of task » fromtimet = 9

Rules

The only way to avoid this problem is to allow the transition
only in certain istants of time;

We must ensure that all tasks that leave the system have
completed, before activating the new tasks.
General rule: first de-activate all tasks that leave the mode,
then activate the tasks that enter the mode
@ In the previous example, this rule was not respected: task
74 IS activated before task 73 is de-activated.
@ Therefore, the earliest instant at which the transition can be
done is time 12, when 73 has completed.
The rule above can be re-expressed as: the earliest time at
which the new tasks can be activated is the largest
absolute deadline among all tasks that leave the system

This means that the transition has a delay.

Type | and type Il

@ The same problem is for implementations of type 1 and of
type 2

@ In type 1, each task can be considered as a different task
in each mode, with a different computation time.

Example revised

T1

2

73

T4

75

12

14

16

18

20

22

24

Example revised

T1

2

73

T4

75

= | l
| =
L-___- l
!
! |

Example revised

T1

2

73

T4

75

= = —
| =
L-___- l
[— l
! |

Example revised

T1

2

73

T4

75

= o — |
| =
L-___- l
[— l
! |

Example revised

T1

2

73

T4

75

= =
| =
L-___- l
[— l
T — l

Example revised

™ ! | |

Example revised

Example revised

Example revised

Maximum transition delay

@ In the worst-case the delay is equal to the length of the
longest period among all tasks that leave the mode.
@ Other possibilities;
@ Another simple assumption is to make the transition at the
hyperperiod;
@ In fact, at the hyperperiod, all task have completed;
@ however, the delay in this case may be larger;
@ Another possibility is to wait for the first idle time;

@ While the delay may be shorter in this case, it may be
difficult to calculate it a priori.

Mode Manager

@ Two more global variables are needed:

@ transition_time is the time after which the tasks that enter
the mode can be activated;

@ transitory is a boolean variable that is true when the
system is changing from one mode to the other;

@ We group these variables in a structure, and protect the
structure with a mutex;

struct _node_struct {
int curr_node;
int ol d_node;
int transitory;
TIME transition_tineg;
pthread_mutex_t m

} ms;

Example of code for the mode manager

TASK node_nanager (void xarg) {
/linitialization
while(l) {
pt hread_mut ex_| ock(&s. m;
if (nme.transitory &&
sys_gettime(&wytinme) >= nms.transition_tinme) {
for (i=0; i<N i++)
if (mode[i][ms.curr_node]) task_activate(pid[i]);
nms.transitory = 0;
pt hr ead_mut ex_unl ock(&s. m ;

else if (isMddeChanged(mns. curr_node) {
ns. ol d_node = ns. curr_node;
ms. curr_node = get Newibde(ns. curr_node);
ms.transitory_time = getTransitoryTi me(ns. ol d_node,

nms. curr_node);

ms. transitory=true;
pt hread_mut ex_unl ock(&s. m;
transition(ms. ol d_node, ns.curr_node);

}
el se pthread_mut ex_unl ock(&s. m;

task_endcycl e();

Considerations

@ In the previous example of code, we suppose that the
mode manager task is a periodic task;

@ The mode manager must execute at high priority;

o If it executes at low priority, the transition delay could
increase due to the response time of the mode manager
task;

@ Additional delay is due to the period of the mode manager
task; The period must be quite small, otherwise the delay
increases too much.

@ The mode manager can also be an aperiodic task;

@ The mode manager task is activate only when the condition
happens, from an external interrupt, of from one of the
other tasks;

@ In this case, it is necessary to understand which is the
maximum frequency of a mode change (minimum
interarrival time);

@ Again, the priority of the mode manager task should be as
high as it is possible.

