
Mode change

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

May 20, 2008

http://feanor.sssup.it/~lipari


Modes

The system can have different working modes
Each mode defines the same system under different
working conditions;

As an example, consider an airplane;
Typical modes are take-off, cruise, and landing;
During each mode, the system has different control goals;
and it must run different control algorithms.



Modes and transistions
Modes can be represented by a state machine. For
example, consider the previous example of airplane
control:

Stop Roll Take off

Landing Approach Fly

start

stop

clear to go

quote

destination

clear to land

lined up



Modes and transistions

A mode is a node in the diagram (a state)
A transition is an edge between two nodes:

A transition happens when certain conditions are verified;
For example, a user command, an internal condition, an
external condition;

Upon the occurrence of a transition:
terminate all tasks that are in the current mode and will not
be active in the new mode;
call a transition function;
activate the new set of tasks to be executed.



Modes and tasks

To implement modes:

In general, there will be one global variable that identifies
the current working mode (currmode);

One manager task that identifies when modes must be
changed;
Modes can be implemented in two basic ways;

1 Type 1 A fixed set of tasks for all the modes; each task can
execute different algorithms depending on the current
mode;

2 Type 2 A different set of tasks for each mode.

Of course, it is also possible to mix the two
implementations.



Mode changes and consistency

There are several problems the designer must deal with
when designing an multi-mode real-time system;
The main problem is what happens during the transition
between two modes. In particular, we must deadl with

1 How to change mode
2 Consistency of variables
3 Schedulability analysis

Now we start dealing with problems 1 and 2.



Consistency

Clearly, we cannot change the control algorithm at an
arbitrary point while the algorithm is executing;

A control algorithm updates its internal state variables while
executing;
we must ensure that the state variable does not remain in
an inconsistent state when we change mode;
the same happens if the task is accessing a shared
resource with a critical section protected by a mutex; we
cannot interrupt it and change algorithm, otherwise the
mutex remains locked!

This means that the change of control algorithm must be
synchronized with appropriate checkpoints;

A checkpoint is a point in the code when is safe to interrupt
the algorithm maintaining the consistency of the data;
The “easiest” checkpoints are at the beginning and at the
end of the task instance.



Implementation type 1

Suppose we synchronize at the beginning of the task
instance. The code for each task is something like the
following;

while(1) {
switch (currmode) {
mode1 : // control algorithm

// for mode 1
break;

mode2 : // control algorithm
// for mode 2
break;

default : break;
}
task_endcycle();

}



Implementation type 1 - II

The task cannot change mode while is executing. It can
only change mode at the beginning of one of its istance;

In this way we guarantee consistency of internal and
external variables (state variables and output variables).

To introduce other checkpoints, we could complicate the
code by dividing each conrol algorithm in different blocks,
and check the change of mode at the end of each block.



Implementation type 2

In this case, each task can be active only in a subset of the
modes.
Define T1 the tasks active in mode 1, and T2 the task active
in mode 2.

Suppose that the list of modes for which a task is active are
stored in 2-dimension array modes[task][mode].
If task i is active in mode currmode, then
modes[i][currmode] is true, otherwise it is false.

Typical code of the task;
while (1) {

// control algorithm
if (!mode[i][currmode]) task_disable();
task_endcycle();

}

The primitive task_disable() suspends the periodic
activations; they will be enabled again by an explicit
task_activate ()



Type 1 vs. type 2

In type 1, all tasks have the same parameters (period and
priority) in every mode;

In type 2, we have different tasks for different modes:
therefore, from one mode to the other, we can change both
the period, the priority and the computation time of a task.

Type 2 is more general, whereas type 1 is more simple to
implement.



Mode manager

In both cases, we need a “mode manager” task that
controls when the mode must be changed.

The mode manager can be a periodic or aperiodic task;
In the first case (periodic), it periodically observe the state
of the system and of the external variables and decided a
mode change;
In the second case (aperiodic), it is attached to an external
interrupt (external condition) or it is explicitely activated by
another task.
The mode manager implements the state machine and
controls transition between modes.

From now on, we consider only type 2 implementations.



Implementation type 2: manager

The task manager is structured as follows

while (1) {
if (modeIsChanged()) {

old_mode = curr_mode;
curr_mode = getNewMode();
transition(old_mode, new_mode);
for (i=0; i < NTASK; i++) {

if (mode[i][curr_mode] && !mode[i][old_mode])
task_activate(tid[i]);

}
}
task_endcycle();

}



Mode Manager

The manager is a periodic task that periodically checks for
occurrence of mode changes.

It waits for a change of mode (function modeIsChanged())

When it happens, performs transition functions and
activates all tasks belonging to the new mode and not
active in the old mode.



Transitions

Suppose the system must change from mode 1 to mode 2.

To ensure a smooth transition between two modes, the
states of control algorithms of mode 2 must be properly
initialized;
In other words, the initial conditions of mode 2 depend on
the state conditions of mode 1.

Suppose, as an example, that we want to guarantee
continuity of the signal and of the first derivative of the
signal.
The, the internal conditions of the controller for mode 2
must be set so to ensure these two conditions;

From a software point of view, for each transition we must
call a set of functions to adjust the initial conditions of all
control algorithms.



Scheduling analysis

Another important problem is schedulability:
Suppose we are changing from mode 1 to mode 2, and
that T1 is the set of tasks active in mode 1 and T2 is the set
of tasks that are active during mode 2.

Set T1\T2 is the set of tasks that leave the mode;
Set T2\T1 is the set of tasks that enter the mode.

It is important to guarantee that the system continue to be
schedulable;

Even if T1 and T2, each one considered in isolation, are
schedulable, if the transistion is not done properly, some
deadline could be missed during the transitory.



Example of deadline miss during transition

Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
τ1 = (1, 4), τ2 = (2, 9), τ3 = (5, 12), and τ4 = (3, 9)
Transition starts at time t = 9

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

Mode change at time 9.



Example of deadline miss during transition

Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
τ1 = (1, 4), τ2 = (2, 9), τ3 = (5, 12), and τ4 = (3, 9)
Transition starts at time t = 9

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

Mode change at time 9.



Example of deadline miss during transition

Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
τ1 = (1, 4), τ2 = (2, 9), τ3 = (5, 12), and τ4 = (3, 9)
Transition starts at time t = 9

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

Mode change at time 9.

Task τ4 executes instead of task τ2 from time t = 9



Example of deadline miss during transition

Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ4, τ5} with:
τ1 = (1, 4), τ2 = (2, 9), τ3 = (5, 12), and τ4 = (3, 9)
Transition starts at time t = 9

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

Mode change at time 9.

Task τ4 executes instead of task τ2 from time t = 9



Rules

The only way to avoid this problem is to allow the transition
only in certain istants of time;

We must ensure that all tasks that leave the system have
completed, before activating the new tasks.
General rule: first de-activate all tasks that leave the mode,
then activate the tasks that enter the mode

In the previous example, this rule was not respected: task
τ4 is activated before task τ3 is de-activated.
Therefore, the earliest instant at which the transition can be
done is time 12, when τ3 has completed.

The rule above can be re-expressed as: the earliest time at
which the new tasks can be activated is the largest
absolute deadline among all tasks that leave the system

This means that the transition has a delay.



Type I and type II

The same problem is for implementations of type 1 and of
type 2

In type 1, each task can be considered as a different task
in each mode, with a different computation time.



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Example revised

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

τ5



Maximum transition delay

In the worst-case the delay is equal to the length of the
longest period among all tasks that leave the mode.
Other possibilities;

Another simple assumption is to make the transition at the
hyperperiod;

In fact, at the hyperperiod, all task have completed;
however, the delay in this case may be larger;

Another possibility is to wait for the first idle time;
While the delay may be shorter in this case, it may be
difficult to calculate it a priori.



Mode Manager

Two more global variables are needed:

transition_time is the time after which the tasks that enter
the mode can be activated;

transitory is a boolean variable that is true when the
system is changing from one mode to the other;

We group these variables in a structure, and protect the
structure with a mutex;

struct _mode_struct {
int curr_mode;
int old_mode;
int transitory;
TIME transition_time;
pthread_mutex_t m;

} ms;



Example of code for the mode manager
TASK mode_manager (void *arg) {
//initialization
while(1) {

pthread_mutex_lock(&ms.m);
if (ms.transitory &&

sys_gettime(&mytime) >= ms.transition_time) {
for (i=0; i<N; i++)
if (mode[i][ms.curr_mode]) task_activate(pid[i]);

ms.transitory = 0;
pthread_mutex_unlock(&ms.m);

}
else if (isModeChanged(ms.curr_mode) {

ms.old_mode = ms.curr_mode;
ms.curr_mode = getNewMode(ms.curr_mode);
ms.transitory_time = getTransitoryTime(ms.old_mode,

ms.curr_mode);
ms.transitory=true;
pthread_mutex_unlock(&ms.m);
transition(ms.old_mode, ms.curr_mode);

}
else pthread_mutex_unlock(&ms.m);

}
task_endcycle();

}



Considerations

In the previous example of code, we suppose that the
mode manager task is a periodic task;

The mode manager must execute at high priority;
If it executes at low priority, the transition delay could
increase due to the response time of the mode manager
task;
Additional delay is due to the period of the mode manager
task; The period must be quite small, otherwise the delay
increases too much.

The mode manager can also be an aperiodic task;
The mode manager task is activate only when the condition
happens, from an external interrupt, of from one of the
other tasks;
In this case, it is necessary to understand which is the
maximum frequency of a mode change (minimum
interarrival time);
Again, the priority of the mode manager task should be as
high as it is possible.


