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Introduction

State machines are basic building blocks for computing theory.
@ very important in theoretical computer science
@ many applications in practical systems

@ There are many slightly different definitions, depending on
the application area

@ A state machine is a Discrete Event Discrete State system
@ transitions from one state to another only happen on
specific events
@ events do not need to occur at specific times
@ we only need a temporal order between events (events

occur one after the other), not the exact time at which they
occur



Definition

A deterministic finite state machine (DFSM) is a 5-tuple:
S (finite) set of states
| set of possible input symbols (also called input alphabet)
Sg initial state
¢ transitions: a function from (state,input) to a new state

p:Sx1—S

w output function (see later)
An event is a new input symbol presented to the machine.

@ In response, the machine will react by updating its state
and possibly producing an output. This reaction is
istantaneous (synchronous assumption).



Output function

Two types of machines:
Moore output only depends on state:

wmoore : S —

Where Q is the set of output symbols. In this case, the
output only depends on the state, and it is produced upon
entrance on a new state.

Mealy output depends on state and input:
wmea|y:S><|—>Q

In this case, the output is produced upon occurrence of a
certain transaction.



Moore machines

@ Moore machines are the simplest ones

@ If Q = {yes, no}, the machine is a recognizer

@ Arecognizer is able to accept or reject sequences of input
symbols

@ The set of sequences accepted by a recognizer is a
regular language



State diagrams

@ FSM can be represented by State Diagrams

RS

@ final states are identified by a double circle



Example: language recognizer

@ In this example | = {a,b}. The following state machine
recognizes string aba




Example: language recognizer Il

@ recognize string a"b™ with n even and m odd (i.e. aabbb,
b, aab are all legal sequences, while a, aabb, are non
legal)

@ S4is an error state. It is not possible
to go out from an error state (for
every input, no transaction out of the
state)

@ S2is an accepting state, however we
do not know the length of the input
string, so it is possible to exit from the
accepting state if the input continues

@ If we want to present a new string we

have to reset the machine to its initial
state




Non regular language

@ FSM are not so powerful. They can only recognize simple
languages
@ Example:

@ strings of the form a"b" for all n > 0 cannot be recognized
by a FSM (because they only have a finite number of states)
@ they could if we put a limit on n. For example, 0 < n < 10.



Mealy machines

@ in Mealy machines, output is related to both state and
input.
@ in practice, output can be associated to a transition

@ given the synchronous assumption, the Moore’s model is
equivalent to the Mealy’s model

@ for every Moore machine, it is possible to derive an
equivalent Mealy machine, and viceversa



Example: parity check

@ In this example, we have a Mealy machine that outputs 1 if
the number of symbols 1 in input so far is odd; it outputs 0

otherwise.
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@ Usually, Mealy machines have a more compact
representation than Moore machines (i.e. they perform the
same task with a number of states that is no less than the
equivalent Moore machine).



Table representation

@ A FSM can be represented through a table

@ The table shown below corresponds to the parity-check
Mealy FSM shown just before.

] o | 1 |
So[So/0 S, /1
S, [Si/1]So/0




Stuttering symbol

@ Input and output alphabets include the absent symbol e
@ It correspond to a null input or output

@ When the input is absent, the state remains the same, and
the output is absent

@ Any sequence of inputs can be interleaved or extended
with an arbitrary number of absent symbols without
changing the behavior of the machine

@ the absent symbol is also called the stuttering symbol



Abbreviations

@ If no guard is specified for a transition, the transition is
taken for every possible input (except the absent symbol ¢)

@ If no output is specified for a transition, the output is e

@ given a state Sy, if a symbol « is not used a guard of any
transition going out of Sg, then an implicit transition from Sg
to itself is defined with « as guard and ¢ as output



Exercise

@ Draw the state diagram of a FSM with | = {0,1},
Q={0,1}

@ let x(k) be the sequence of inputs

@ the output w(k) = 1iffx(k —2) =x(k = 1) =x(k) =1



Solution

@ three states: SO is the initial state, S1 if last input was 1,
S2 if last two inputs were 1
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Deterministic machines

@ Transitions are associated with
@ a source state
@ aguard (i.e. a input value)
@ a destination state
@ a output
@ in deterministic FSM, a transition is uniquely identified by
the first two.

@ in other words, given a source state and a input, the
destination and the output are uniquely defined



Non deterministic FSMs

@ A non deterministic finite state machine is identified by a
5-tuple:
set of input symbols
Q set of output symbols
S set of states
Sy set of initial states
¢ transition function:

$:Sx1—(SxQ)
where S* denotes the power set of S, i.e. the set of all
possible subsets of S.

@ In other words, given a state and an input, the transition
returns a set of possible pairs (new state, output).



Non determinism

@ Non determinism is used in many cases:

@ to model randomness
@ to build more compact automata
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Non determinism

@ Non determinism is used in many cases:
@ to model randomness
@ to build more compact automata
@ Randomness is when there is more than one possible
behaviour and the system follows one specific behavior at
random

@ Randomness has nothing to do with probability! we do not
know the probability of occurrence of every behavior, we
only know that they are possible

@ A more abstract model of a system hides unnecessary
details, and it is more compact (less states)



Example of non deterministic state machine

@ We now build an automata to recognize all input strings (of
any lenght) that end with a 01




Equivalence between D-FSM and N-FSM

@ It is possible to show that Deterministic FSMs (D-FSMs)
are equivalent to non deterministic ones(N-FSMs)
@ Proof sketch

@ Given a N-FSM A, we build an equivalent D-FSM B (i.e.
that recognizes the same strings recognized by the N-FSM.
For every subset of states of the .4, we make a state of B.
Therefore, the maximum number of states of B is 2/SI. The
start state of B is the one corresponding to the A. For every
subset of states that are reachable from the start state of
state of .4 with a certain symbol, we make one transition in
BB to the state corresponding to the sub-set. The procedure
is iterated until all transitions have been covered.



Example

@ As an exercise, build the D-FSM equivalent to the previous
example of N-FSM

Figure: The N-FSM



Solution

@ Initial state: {SO}

Figure: The N-FSM

state name | subset 0 1
go {S0} {S0, S1} {S0}
gl {S0,S1} | {SO, S1} | {S0, S2}
g2 {S0,S2} | {S0, S1} {S0}




Solution

Figure: The N-FSM
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