Sistemi in tempo reale Anno accademico 2006 - 2007 Introduction to FSMs

Giuseppe Lipari

http://feanor.sssup.it/~lipari

Scuola Superiore Sant'Anna

Outline

- Generalities on Finite State Machines (FSMs)
 - State Diagrams
 - Mealy machines
 - Non deterministic FSMs

Introduction

State machines are basic building blocks for computing theory.

- very important in theoretical computer science
- many applications in practical systems
- There are many slightly different definitions, depending on the application area
- A state machine is a Discrete Event Discrete State system
 - transitions from one state to another only happen on specific events
 - events do not need to occur at specific times
 - we only need a temporal order between events (events occur one after the other), not the exact time at which they occur

Definition

A deterministic finite state machine (DFSM) is a 5-tuple:

- S (finite) set of states
- / set of possible input symbols (also called input alphabet)
- so initial state
 - ϕ transitions: a function from (state,input) to a new state

$$\phi: S \times I \rightarrow S$$

 ω output function (see later)

An event is a new input symbol presented to the machine.

 In response, the machine will react by updating its state and possibly producing an output. This reaction is istantaneous (synchronous assumption).

Output function

Two types of machines:

Moore output only depends on state:

$$\omega$$
moore : $S \to \Omega$

Where Ω is the set of output symbols. In this case, the output only depends on the state, and it is produced upon entrance on a new state.

Mealy output depends on state and input:

$$\omega_{\mathsf{mealy}}: \mathsf{S} \times \mathsf{I} \to \Omega$$

In this case, the output is produced upon occurrence of a certain transaction.

Moore machines

- Moore machines are the simplest ones
- If $\Omega = \{yes, no\}$, the machine is a recognizer
- A recognizer is able to accept or reject sequences of input symbols
- The set of sequences accepted by a recognizer is a regular language

State diagrams

• FSM can be represented by State Diagrams

final states are identified by a double circle

Example: language recognizer

• In this example $I = \{a, b\}$. The following state machine recognizes string aba

Example: language recognizer II

 recognize string aⁿb^m with n even and m odd (i.e. aabbb, b, aab are all legal sequences, while a, aabb, are non legal)

- S4 is an error state. It is not possible to go out from an error state (for every input, no transaction out of the state)
- S2 is an accepting state, however we do not know the length of the input string, so it is possible to exit from the accepting state if the input continues
- If we want to present a new string we have to reset the machine to its initial state

Non regular language

- FSM are not so powerful. They can only recognize simple languages
- Example:
 - strings of the form a^nb^n for all $n \ge 0$ cannot be recognized by a FSM (because they only have a finite number of states)
 - they could if we put a limit on n. For example, $0 \le n \le 10$.

Mealy machines

- in Mealy machines, output is related to both state and input.
- in practice, output can be associated to a transition
- given the synchronous assumption, the Moore's model is equivalent to the Mealy's model
- for every Moore machine, it is possible to derive an equivalent Mealy machine, and viceversa

Example: parity check

 In this example, we have a Mealy machine that outputs 1 if the number of symbols 1 in input so far is odd; it outputs 0 otherwise.

 Usually, Mealy machines have a more compact representation than Moore machines (i.e. they perform the same task with a number of states that is no less than the equivalent Moore machine).

Table representation

- A FSM can be represented through a table
- The table shown below corresponds to the parity-check Mealy FSM shown just before.

	0	1	
S_0	S ₀ / 0	S ₁ / 1	
S ₁	S ₁ / 1	S ₀ / 0	

Stuttering symbol

- ullet Input and output alphabets include the absent symbol ϵ
- It correspond to a null input or output
- When the input is absent, the state remains the same, and the output is absent
- Any sequence of inputs can be interleaved or extended with an arbitrary number of absent symbols without changing the behavior of the machine
- the absent symbol is also called the stuttering symbol

Abbreviations

- If no guard is specified for a transition, the transition is taken for every possible input (except the absent symbol ϵ)
- ullet If no output is specified for a transition, the output is ϵ
- given a state S_0 , if a symbol α is not used a guard of any transition going out of S_0 , then an implicit transition from S_0 to itself is defined with α as guard and ϵ as output

Exercise

- Draw the state diagram of a FSM with $I = \{0, 1\}$, $\Omega = \{0, 1\}$
- let x(k) be the sequence of inputs
- the output $\omega(k) = 1$ iff x(k-2) = x(k-1) = x(k) = 1

Solution

three states: S0 is the initial state, S1 if last input was 1,
 S2 if last two inputs were 1

Deterministic machines

- Transitions are associated with
 - a source state
 - a guard (i.e. a input value)
 - a destination state
 - a output
- in deterministic FSM, a transition is uniquely identified by the first two.
- in other words, given a source state and a input, the destination and the output are uniquely defined

Non deterministic FSMs

- A non deterministic finite state machine is identified by a 5-tuple:
 - / set of input symbols
 - Ω set of output symbols
 - S set of states
 - S₀ set of initial states
 - φ transition function:

$$\phi: S \times I \rightarrow (S \times \Omega)^*$$

where S^* denotes the power set of S, i.e. the set of all possible subsets of S.

• In other words, given a state and an input, the transition returns a set of possible pairs (new state, output).

- Non determinism is used in many cases:
 - to model randomness
 - to build more compact automata

- Non determinism is used in many cases:
 - to model randomness
 - to build more compact automata
- Randomness is when there is more than one possible behaviour and the system follows one specific behavior at random

- Non determinism is used in many cases:
 - to model randomness
 - to build more compact automata
- Randomness is when there is more than one possible behaviour and the system follows one specific behavior at random
- Randomness has nothing to do with probability! we do not know the probability of occurrence of every behavior, we only know that they are possible

- Non determinism is used in many cases:
 - to model randomness
 - to build more compact automata
- Randomness is when there is more than one possible behaviour and the system follows one specific behavior at random
- Randomness has nothing to do with probability! we do not know the probability of occurrence of every behavior, we only know that they are possible
- A more abstract model of a system hides unnecessary details, and it is more compact (less states)

Example of non deterministic state machine

 We now build an automata to recognize all input strings (of any length) that end with a 01

Equivalence between D-FSM and N-FSM

- It is possible to show that Deterministic FSMs (D-FSMs) are equivalent to non deterministic ones(N-FSMs)
- Proof sketch
 - Given a N-FSM \mathcal{A} , we build an equivalent D-FSM \mathcal{B} (i.e. that recognizes the same strings recognized by the N-FSM. For every subset of states of the \mathcal{A} , we make a state of \mathcal{B} . Therefore, the maximum number of states of \mathcal{B} is $2^{|\mathcal{S}|}$. The start state of \mathcal{B} is the one corresponding to the \mathcal{A} . For every subset of states that are reachable from the start state of state of \mathcal{A} with a certain symbol, we make one transition in \mathcal{B} to the state corresponding to the sub-set. The procedure is iterated until all transitions have been covered.

Example

 As an exercise, build the D-FSM equivalent to the previous example of N-FSM

Figure: The N-FSM

Solution

Figure: The N-FSM

• Initial state: {S0}

state name	subset	0	1
q0	{S0}	{S0, S1}	{S0}
q1	{S0,S1}	{S0, S1}	{S0, S2}
q2	{S0,S2}	{S0, S1}	{S0}

Solution

Figure: The N-FSM